Small Towers Make Big Differences
- URL: http://arxiv.org/abs/2008.05808v1
- Date: Thu, 13 Aug 2020 10:45:31 GMT
- Title: Small Towers Make Big Differences
- Authors: Yuyan Wang, Zhe Zhao, Bo Dai, Christopher Fifty, Dong Lin, Lichan
Hong, Ed H. Chi
- Abstract summary: Multi-task learning aims at solving multiple machine learning tasks at the same time.
A good solution to a multi-task learning problem should be generalizable in addition to being Pareto optimal.
We propose a method of under- parameterized self-auxiliaries for multi-task models to achieve the best of both worlds.
- Score: 59.243296878666285
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Multi-task learning aims at solving multiple machine learning tasks at the
same time. A good solution to a multi-task learning problem should be
generalizable in addition to being Pareto optimal. In this paper, we provide
some insights on understanding the trade-off between Pareto efficiency and
generalization as a result of parameterization in multi-task deep learning
models. As a multi-objective optimization problem, enough parameterization is
needed for handling task conflicts in a constrained solution space; however,
from a multi-task generalization perspective, over-parameterization undermines
the benefit of learning a shared representation which helps harder tasks or
tasks with limited training examples. A delicate balance between multi-task
generalization and multi-objective optimization is therefore needed for finding
a better trade-off between efficiency and generalization. To this end, we
propose a method of under-parameterized self-auxiliaries for multi-task models
to achieve the best of both worlds. It is task-agnostic and works with other
multi-task learning algorithms. Empirical results show that small towers of
under-parameterized self-auxiliaries can make big differences in improving
Pareto efficiency in various multi-task applications.
Related papers
- Multi-Task Learning with Multi-Task Optimization [31.518330903602095]
We show that a set of optimized yet well-distributed models embody different trade-offs in one algorithmic pass.
We investigate the proposed multi-task learning with multi-task optimization for solving various problem settings.
arXiv Detail & Related papers (2024-03-24T14:04:40Z) - Pareto Manifold Learning: Tackling multiple tasks via ensembles of
single-task models [50.33956216274694]
In Multi-Task Learning (MTL), tasks may compete and limit the performance achieved on each other, rather than guiding the optimization to a solution.
We propose textitPareto Manifold Learning, an ensembling method in weight space.
arXiv Detail & Related papers (2022-10-18T11:20:54Z) - Leveraging convergence behavior to balance conflicting tasks in
multi-task learning [3.6212652499950138]
Multi-Task Learning uses correlated tasks to improve performance generalization.
Tasks often conflict with each other, which makes it challenging to define how the gradients of multiple tasks should be combined.
We propose a method that takes into account temporal behaviour of the gradients to create a dynamic bias that adjust the importance of each task during the backpropagation.
arXiv Detail & Related papers (2022-04-14T01:52:34Z) - In Defense of the Unitary Scalarization for Deep Multi-Task Learning [121.76421174107463]
We present a theoretical analysis suggesting that many specialized multi-tasks can be interpreted as forms of regularization.
We show that, when coupled with standard regularization and stabilization techniques, unitary scalarization matches or improves upon the performance of complex multitasks.
arXiv Detail & Related papers (2022-01-11T18:44:17Z) - Reparameterizing Convolutions for Incremental Multi-Task Learning
without Task Interference [75.95287293847697]
Two common challenges in developing multi-task models are often overlooked in literature.
First, enabling the model to be inherently incremental, continuously incorporating information from new tasks without forgetting the previously learned ones (incremental learning)
Second, eliminating adverse interactions amongst tasks, which has been shown to significantly degrade the single-task performance in a multi-task setup (task interference)
arXiv Detail & Related papers (2020-07-24T14:44:46Z) - Knowledge Distillation for Multi-task Learning [38.20005345733544]
Multi-task learning (MTL) is to learn one single model that performs multiple tasks for achieving good performance on all tasks and lower cost on computation.
Learning such a model requires to jointly optimize losses of a set of tasks with different difficulty levels, magnitudes, and characteristics.
We propose a knowledge distillation based method in this work to address the imbalance problem in multi-task learning.
arXiv Detail & Related papers (2020-07-14T08:02:42Z) - Gradient Surgery for Multi-Task Learning [119.675492088251]
Multi-task learning has emerged as a promising approach for sharing structure across multiple tasks.
The reasons why multi-task learning is so challenging compared to single-task learning are not fully understood.
We propose a form of gradient surgery that projects a task's gradient onto the normal plane of the gradient of any other task that has a conflicting gradient.
arXiv Detail & Related papers (2020-01-19T06:33:47Z) - Pareto Multi-Task Learning [53.90732663046125]
Multi-task learning is a powerful method for solving multiple correlated tasks simultaneously.
It is often impossible to find one single solution to optimize all the tasks, since different tasks might conflict with each other.
Recently, a novel method is proposed to find one single Pareto optimal solution with good trade-off among different tasks by casting multi-task learning as multiobjective optimization.
arXiv Detail & Related papers (2019-12-30T08:58:40Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.