LGNN: A Context-aware Line Segment Detector
- URL: http://arxiv.org/abs/2008.05892v2
- Date: Sat, 29 Aug 2020 03:43:06 GMT
- Title: LGNN: A Context-aware Line Segment Detector
- Authors: Quan Meng, Jiakai Zhang, Qiang Hu, Xuming He, Jingyi Yu
- Abstract summary: We present a novel real-time line segment detection scheme called Line Graph Neural Network (LGNN)
Our LGNN employs a deep convolutional neural network (DCNN) for proposing line segment directly, with a graph neural network (GNN) module for reasoning their connectivities.
Compared with the state-of-the-art, LGNN achieves near real-time performance without compromising accuracy.
- Score: 53.424521592941936
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We present a novel real-time line segment detection scheme called Line Graph
Neural Network (LGNN). Existing approaches require a computationally expensive
verification or postprocessing step. Our LGNN employs a deep convolutional
neural network (DCNN) for proposing line segment directly, with a graph neural
network (GNN) module for reasoning their connectivities. Specifically, LGNN
exploits a new quadruplet representation for each line segment where the GNN
module takes the predicted candidates as vertexes and constructs a sparse graph
to enforce structural context. Compared with the state-of-the-art, LGNN
achieves near real-time performance without compromising accuracy. LGNN further
enables time-sensitive 3D applications. When a 3D point cloud is accessible, we
present a multi-modal line segment classification technique for extracting a 3D
wireframe of the environment robustly and efficiently.
Related papers
- Classifying Nodes in Graphs without GNNs [50.311528896010785]
We propose a fully GNN-free approach for node classification, not requiring them at train or test time.
Our method consists of three key components: smoothness constraints, pseudo-labeling iterations and neighborhood-label histograms.
arXiv Detail & Related papers (2024-02-08T18:59:30Z) - Graph Coordinates and Conventional Neural Networks -- An Alternative for
Graph Neural Networks [0.10923877073891444]
We propose Topology Coordinate Neural Network (TCNN) and Directional Virtual Coordinate Neural Network (DVCNN) as novel alternatives to message passing GNNs.
TCNN and DVCNN achieve competitive or superior performance to message passing GNNs.
Our work expands the toolbox of techniques for graph-based machine learning.
arXiv Detail & Related papers (2023-12-03T10:14:10Z) - MLGCN: An Ultra Efficient Graph Convolution Neural Model For 3D Point
Cloud Analysis [4.947552172739438]
We introduce a novel Multi-level Graph Convolution Neural (MLGCN) model, which uses Graph Neural Networks (GNN) blocks to extract features from 3D point clouds at specific locality levels.
Our approach produces comparable results to those of state-of-the-art models while requiring up to a thousand times fewer floating-point operations (FLOPs) and having significantly reduced storage requirements.
arXiv Detail & Related papers (2023-03-31T00:15:22Z) - Geodesic Graph Neural Network for Efficient Graph Representation
Learning [34.047527874184134]
We propose an efficient GNN framework called Geodesic GNN (GDGNN)
It injects conditional relationships between nodes into the model without labeling.
Conditioned on the geodesic representations, GDGNN is able to generate node, link, and graph representations that carry much richer structural information than plain GNNs.
arXiv Detail & Related papers (2022-10-06T02:02:35Z) - Exploiting Local Geometry for Feature and Graph Construction for Better
3D Point Cloud Processing with Graph Neural Networks [22.936590869919865]
We propose improvements in point representations and local neighborhood graph construction within the general framework of graph neural networks.
We show that the proposed network achieves faster training convergence, i.e. 40% less epochs for classification.
arXiv Detail & Related papers (2021-03-28T21:34:59Z) - Binary Graph Neural Networks [69.51765073772226]
Graph Neural Networks (GNNs) have emerged as a powerful and flexible framework for representation learning on irregular data.
In this paper, we present and evaluate different strategies for the binarization of graph neural networks.
We show that through careful design of the models, and control of the training process, binary graph neural networks can be trained at only a moderate cost in accuracy on challenging benchmarks.
arXiv Detail & Related papers (2020-12-31T18:48:58Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z) - Binarized Graph Neural Network [65.20589262811677]
We develop a binarized graph neural network to learn the binary representations of the nodes with binary network parameters.
Our proposed method can be seamlessly integrated into the existing GNN-based embedding approaches.
Experiments indicate that the proposed binarized graph neural network, namely BGN, is orders of magnitude more efficient in terms of both time and space.
arXiv Detail & Related papers (2020-04-19T09:43:14Z) - EdgeNets:Edge Varying Graph Neural Networks [179.99395949679547]
This paper puts forth a general framework that unifies state-of-the-art graph neural networks (GNNs) through the concept of EdgeNet.
An EdgeNet is a GNN architecture that allows different nodes to use different parameters to weigh the information of different neighbors.
This is a general linear and local operation that a node can perform and encompasses under one formulation all existing graph convolutional neural networks (GCNNs) as well as graph attention networks (GATs)
arXiv Detail & Related papers (2020-01-21T15:51:17Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.