Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems
- URL: http://arxiv.org/abs/2008.06239v2
- Date: Thu, 20 Aug 2020 10:56:47 GMT
- Title: Language Models as Few-Shot Learner for Task-Oriented Dialogue Systems
- Authors: Andrea Madotto, Zihan Liu, Zhaojiang Lin, Pascale Fung
- Abstract summary: Task-oriented dialogue systems use four connected modules, namely, Natural Language Understanding (NLU), a Dialogue State Tracking (DST), Dialogue Policy (DP) and Natural Language Generation (NLG)
A research challenge is to learn each module with the least amount of samples given the high cost related to the data collection.
We evaluate the priming few-shot ability of language models in the NLU, DP and NLG tasks.
- Score: 74.8759568242933
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Task-oriented dialogue systems use four connected modules, namely, Natural
Language Understanding (NLU), a Dialogue State Tracking (DST), Dialogue Policy
(DP) and Natural Language Generation (NLG). A research challenge is to learn
each module with the least amount of samples (i.e., few-shots) given the high
cost related to the data collection. The most common and effective technique to
solve this problem is transfer learning, where large language models, either
pre-trained on text or task-specific data, are fine-tuned on the few samples.
These methods require fine-tuning steps and a set of parameters for each task.
Differently, language models, such as GPT-2 (Radford et al., 2019) and GPT-3
(Brown et al., 2020), allow few-shot learning by priming the model with few
examples. In this paper, we evaluate the priming few-shot ability of language
models in the NLU, DST, DP and NLG tasks. Importantly, we highlight the current
limitations of this approach, and we discuss the possible implication for
future work.
Related papers
- Stabilized In-Context Learning with Pre-trained Language Models for Few
Shot Dialogue State Tracking [57.92608483099916]
Large pre-trained language models (PLMs) have shown impressive unaided performance across many NLP tasks.
For more complex tasks such as dialogue state tracking (DST), designing prompts that reliably convey the desired intent is nontrivial.
We introduce a saliency model to limit dialogue text length, allowing us to include more exemplars per query.
arXiv Detail & Related papers (2023-02-12T15:05:10Z) - Understanding the Effectiveness of Very Large Language Models on Dialog
Evaluation [20.18656308749408]
Large language models (LLMs) have been used for generation and can now output human-like text.
This paper investigates how the number of examples in the prompt and the type of example selection used affect the model's performance.
arXiv Detail & Related papers (2023-01-27T22:02:27Z) - Bidirectional Language Models Are Also Few-shot Learners [54.37445173284831]
We present SAP (Sequential Autoregressive Prompting), a technique that enables the prompting of bidirectional models.
We show SAP is effective on question answering and summarization.
For the first time, our results demonstrate prompt-based learning is an emergent property of a broader class of language models.
arXiv Detail & Related papers (2022-09-29T01:35:57Z) - OPAL: Ontology-Aware Pretrained Language Model for End-to-End
Task-Oriented Dialogue [40.62090743056549]
This paper presents an ontology-aware pretrained language model (OPAL) for end-to-end task-oriented dialogue (TOD)
Unlike chit-chat dialogue models, task-oriented dialogue models fulfill at least two task-specific modules: dialogue state tracker (DST) and response generator (RG)
arXiv Detail & Related papers (2022-09-10T04:38:27Z) - A Study on Prompt-based Few-Shot Learning Methods for Belief State
Tracking in Task-oriented Dialog Systems [10.024834304960846]
We tackle the Dialogue Belief State Tracking problem of task-oriented conversational systems.
Recent approaches to this problem leveraging Transformer-based models have yielded great results.
We explore prompt-based few-shot learning for Dialogue Belief State Tracking.
arXiv Detail & Related papers (2022-04-18T05:29:54Z) - In-Context Learning for Few-Shot Dialogue State Tracking [55.91832381893181]
We propose an in-context (IC) learning framework for few-shot dialogue state tracking (DST)
A large pre-trained language model (LM) takes a test instance and a few annotated examples as input, and directly decodes the dialogue states without any parameter updates.
This makes the LM more flexible and scalable compared to prior few-shot DST work when adapting to new domains and scenarios.
arXiv Detail & Related papers (2022-03-16T11:58:24Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - WARP: Word-level Adversarial ReProgramming [13.08689221166729]
In many applications it is preferable to tune much smaller sets of parameters, so that the majority of parameters can be shared across multiple tasks.
We present an alternative approach based on adversarial reprogramming, which extends earlier work on automatic prompt generation.
We show that this approach outperforms other methods with a similar number of trainable parameters on SST-2 and MNLI datasets.
arXiv Detail & Related papers (2021-01-01T00:41:03Z) - Language Models are Few-Shot Learners [61.36677350504291]
We show that scaling up language models greatly improves task-agnostic, few-shot performance.
We train GPT-3, an autoregressive language model with 175 billion parameters, and test its performance in the few-shot setting.
GPT-3 achieves strong performance on many NLP datasets, including translation, question-answering, and cloze tasks.
arXiv Detail & Related papers (2020-05-28T17:29:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.