Compositional Generalization via Neural-Symbolic Stack Machines
- URL: http://arxiv.org/abs/2008.06662v2
- Date: Thu, 22 Oct 2020 07:16:10 GMT
- Title: Compositional Generalization via Neural-Symbolic Stack Machines
- Authors: Xinyun Chen, Chen Liang, Adams Wei Yu, Dawn Song, Denny Zhou
- Abstract summary: We propose the Neural-Symbolic Stack Machine (NeSS) to tackle limitations in compositional generalization.
NeSS combines the expressive power of neural sequence models with the recursion supported by the symbolic stack machine.
NeSS achieves 100% generalization performance in four domains.
- Score: 99.79811868836248
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Despite achieving tremendous success, existing deep learning models have
exposed limitations in compositional generalization, the capability to learn
compositional rules and apply them to unseen cases in a systematic manner. To
tackle this issue, we propose the Neural-Symbolic Stack Machine (NeSS). It
contains a neural network to generate traces, which are then executed by a
symbolic stack machine enhanced with sequence manipulation operations. NeSS
combines the expressive power of neural sequence models with the recursion
supported by the symbolic stack machine. Without training supervision on
execution traces, NeSS achieves 100% generalization performance in four
domains: the SCAN benchmark of language-driven navigation tasks, the task of
few-shot learning of compositional instructions, the compositional machine
translation benchmark, and context-free grammar parsing tasks.
Related papers
- The Role of Foundation Models in Neuro-Symbolic Learning and Reasoning [54.56905063752427]
Neuro-Symbolic AI (NeSy) holds promise to ensure the safe deployment of AI systems.
Existing pipelines that train the neural and symbolic components sequentially require extensive labelling.
New architecture, NeSyGPT, fine-tunes a vision-language foundation model to extract symbolic features from raw data.
arXiv Detail & Related papers (2024-02-02T20:33:14Z) - Nondeterministic Stacks in Neural Networks [0.456877715768796]
We develop a differentiable data structure that efficiently simulates a nondeterministic pushdown automaton.
We show that this raises their formal recognition power to arbitrary context-free languages.
We also show that an RNN augmented with a nondeterministic stack is capable of surprisingly powerful behavior.
arXiv Detail & Related papers (2023-04-25T16:00:40Z) - Mastering Symbolic Operations: Augmenting Language Models with Compiled
Neural Networks [48.14324895100478]
"Neural architecture" integrates compiled neural networks (CoNNs) into a standard transformer.
CoNNs are neural modules designed to explicitly encode rules through artificially generated attention weights.
Experiments demonstrate superiority of our approach over existing techniques in terms of length generalization, efficiency, and interpretability for symbolic operations.
arXiv Detail & Related papers (2023-04-04T09:50:07Z) - Neural-Symbolic Recursive Machine for Systematic Generalization [113.22455566135757]
We introduce the Neural-Symbolic Recursive Machine (NSR), whose core is a Grounded Symbol System (GSS)
NSR integrates neural perception, syntactic parsing, and semantic reasoning.
We evaluate NSR's efficacy across four challenging benchmarks designed to probe systematic generalization capabilities.
arXiv Detail & Related papers (2022-10-04T13:27:38Z) - Inducing Transformer's Compositional Generalization Ability via
Auxiliary Sequence Prediction Tasks [86.10875837475783]
Systematic compositionality is an essential mechanism in human language, allowing the recombination of known parts to create novel expressions.
Existing neural models have been shown to lack this basic ability in learning symbolic structures.
We propose two auxiliary sequence prediction tasks that track the progress of function and argument semantics.
arXiv Detail & Related papers (2021-09-30T16:41:19Z) - Sequence-to-Sequence Learning with Latent Neural Grammars [12.624691611049341]
Sequence-to-sequence learning with neural networks has become the de facto standard for sequence prediction tasks.
While flexible and performant, these models often require large datasets for training and can fail spectacularly on benchmarks designed to test for compositional generalization.
This work explores an alternative, hierarchical approach to sequence-to-sequence learning with quasi-synchronous grammars.
arXiv Detail & Related papers (2021-09-02T17:58:08Z) - SyGNS: A Systematic Generalization Testbed Based on Natural Language
Semantics [39.845425535943534]
We propose a Systematic Generalization testbed based on Natural language Semantics (SyGNS)
We test whether neural networks can systematically parse sentences involving novel combinations of logical expressions such as quantifiers and negation.
Experiments show that Transformer and GRU models can generalize to unseen combinations of quantifiers, negations, and modifier that are similar to given training instances in form, but not to the others.
arXiv Detail & Related papers (2021-06-02T11:24:41Z) - Neural Complexity Measures [96.06344259626127]
We propose Neural Complexity (NC), a meta-learning framework for predicting generalization.
Our model learns a scalar complexity measure through interactions with many heterogeneous tasks in a data-driven way.
arXiv Detail & Related papers (2020-08-07T02:12:10Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.