Do Not Disturb Me: Person Re-identification Under the Interference of
Other Pedestrians
- URL: http://arxiv.org/abs/2008.06963v1
- Date: Sun, 16 Aug 2020 17:45:14 GMT
- Title: Do Not Disturb Me: Person Re-identification Under the Interference of
Other Pedestrians
- Authors: Shizhen Zhao, Changxin Gao, Jun Zhang, Hao Cheng, Chuchu Han, Xinyang
Jiang, Xiaowei Guo, Wei-Shi Zheng, Nong Sang, Xing Sun
- Abstract summary: This paper presents a novel deep network termed Pedestrian-Interference Suppression Network (PISNet)
PISNet leverages a Query-Guided Attention Block (QGAB) to enhance the feature of the target in the gallery, under the guidance of the query.
Our method is evaluated on two new pedestrian-interference datasets and the results show that the proposed method performs favorably against existing Re-ID methods.
- Score: 97.45805377769354
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In the conventional person Re-ID setting, it is widely assumed that cropped
person images are for each individual. However, in a crowded scene,
off-shelf-detectors may generate bounding boxes involving multiple people,
where the large proportion of background pedestrians or human occlusion exists.
The representation extracted from such cropped images, which contain both the
target and the interference pedestrians, might include distractive information.
This will lead to wrong retrieval results. To address this problem, this paper
presents a novel deep network termed Pedestrian-Interference Suppression
Network (PISNet). PISNet leverages a Query-Guided Attention Block (QGAB) to
enhance the feature of the target in the gallery, under the guidance of the
query. Furthermore, the involving Guidance Reversed Attention Module and the
Multi-Person Separation Loss promote QGAB to suppress the interference of other
pedestrians. Our method is evaluated on two new pedestrian-interference
datasets and the results show that the proposed method performs favorably
against existing Re-ID methods.
Related papers
- Keypoint Promptable Re-Identification [76.31113049256375]
Occluded Person Re-Identification (ReID) is a metric learning task that involves matching occluded individuals based on their appearance.
We introduce Keypoint Promptable ReID (KPR), a novel formulation of the ReID problem that explicitly complements the input bounding box with a set of semantic keypoints.
We release custom keypoint labels for four popular ReID benchmarks. Experiments on person retrieval, but also on pose tracking, demonstrate that our method systematically surpasses previous state-of-the-art approaches.
arXiv Detail & Related papers (2024-07-25T15:20:58Z) - Erasing, Transforming, and Noising Defense Network for Occluded Person
Re-Identification [36.91680117072686]
We propose Erasing, Transforming, and Noising Defense Network (ETNDNet) to solve occluded person re-ID.
In the proposed ETNDNet, we randomly erase the feature map to create an adversarial representation with incomplete information.
Thirdly, we perturb the feature map with random values to address noisy information introduced by obstacles and non-target pedestrians.
arXiv Detail & Related papers (2023-07-14T06:42:21Z) - Attention Disturbance and Dual-Path Constraint Network for Occluded
Person Re-identification [36.86516784815214]
We propose a transformer-based Attention Disturbance and Dual-Path Constraint Network (ADP) to enhance the generalization of attention networks.
To imitate real-world obstacles, we introduce an Attention Disturbance Mask (ADM) module that generates an offensive noise.
We also develop a Dual-Path Constraint Module (DPC) that can obtain preferable supervision information from holistic images.
arXiv Detail & Related papers (2023-03-20T09:56:35Z) - Occluded Person Re-Identification via Relational Adaptive Feature
Correction Learning [8.015703163954639]
Occluded person re-identification (Re-ID) in images captured by multiple cameras is challenging because the target person is occluded by pedestrians or objects.
Most existing methods utilize the off-the-shelf pose or parsing networks as pseudo labels, which are prone to error.
We propose a novel Occlusion Correction Network (OCNet) that corrects features through relational-weight learning and obtains diverse and representative features without using external networks.
arXiv Detail & Related papers (2022-12-09T07:48:47Z) - Revisiting Consistency Regularization for Semi-supervised Change
Detection in Remote Sensing Images [60.89777029184023]
We propose a semi-supervised CD model in which we formulate an unsupervised CD loss in addition to the supervised Cross-Entropy (CE) loss.
Experiments conducted on two publicly available CD datasets show that the proposed semi-supervised CD method can reach closer to the performance of supervised CD.
arXiv Detail & Related papers (2022-04-18T17:59:01Z) - CGUA: Context-Guided and Unpaired-Assisted Weakly Supervised Person
Search [54.106662998673514]
We introduce a Context-Guided and Unpaired-Assisted (CGUA) weakly supervised person search framework.
Specifically, we propose a novel Context-Guided Cluster (CGC) algorithm to leverage context information in the clustering process.
Our method achieves comparable or better performance to the state-of-the-art supervised methods by leveraging more diverse unlabeled data.
arXiv Detail & Related papers (2022-03-27T13:57:30Z) - Dual Spoof Disentanglement Generation for Face Anti-spoofing with Depth
Uncertainty Learning [54.15303628138665]
Face anti-spoofing (FAS) plays a vital role in preventing face recognition systems from presentation attacks.
Existing face anti-spoofing datasets lack diversity due to the insufficient identity and insignificant variance.
We propose Dual Spoof Disentanglement Generation framework to tackle this challenge by "anti-spoofing via generation"
arXiv Detail & Related papers (2021-12-01T15:36:59Z) - Coherent Reconstruction of Multiple Humans from a Single Image [68.3319089392548]
In this work, we address the problem of multi-person 3D pose estimation from a single image.
A typical regression approach in the top-down setting of this problem would first detect all humans and then reconstruct each one of them independently.
Our goal is to train a single network that learns to avoid these problems and generate a coherent 3D reconstruction of all the humans in the scene.
arXiv Detail & Related papers (2020-06-15T17:51:45Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.