A Self-supervised GAN for Unsupervised Few-shot Object Recognition
- URL: http://arxiv.org/abs/2008.06982v2
- Date: Mon, 19 Oct 2020 18:05:25 GMT
- Title: A Self-supervised GAN for Unsupervised Few-shot Object Recognition
- Authors: Khoi Nguyen, Sinisa Todorovic
- Abstract summary: This paper addresses unsupervised few-shot object recognition.
All training images are unlabeled, and test images are divided into queries and a few labeled support images per object class of interest.
We extend the vanilla GAN with two loss functions, both aimed at self-supervised learning.
- Score: 39.79912546252623
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper addresses unsupervised few-shot object recognition, where all
training images are unlabeled, and test images are divided into queries and a
few labeled support images per object class of interest. The training and test
images do not share object classes. We extend the vanilla GAN with two loss
functions, both aimed at self-supervised learning. The first is a
reconstruction loss that enforces the discriminator to reconstruct the
probabilistically sampled latent code which has been used for generating the
"fake" image. The second is a triplet loss that enforces the discriminator to
output image encodings that are closer for more similar images. Evaluation,
comparisons, and detailed ablation studies are done in the context of few-shot
classification. Our approach significantly outperforms the state of the art on
the Mini-Imagenet and Tiered-Imagenet datasets.
Related papers
- A Semi-Paired Approach For Label-to-Image Translation [6.888253564585197]
We introduce the first semi-supervised (semi-paired) framework for label-to-image translation.
In the semi-paired setting, the model has access to a small set of paired data and a larger set of unpaired images and labels.
We propose a training algorithm for this shared network, and we present a rare classes sampling algorithm to focus on under-represented classes.
arXiv Detail & Related papers (2023-06-23T16:13:43Z) - Mix-up Self-Supervised Learning for Contrast-agnostic Applications [33.807005669824136]
We present the first mix-up self-supervised learning framework for contrast-agnostic applications.
We address the low variance across images based on cross-domain mix-up and build the pretext task based on image reconstruction and transparency prediction.
arXiv Detail & Related papers (2022-04-02T16:58:36Z) - Unsupervised Part Discovery from Contrastive Reconstruction [90.88501867321573]
The goal of self-supervised visual representation learning is to learn strong, transferable image representations.
We propose an unsupervised approach to object part discovery and segmentation.
Our method yields semantic parts consistent across fine-grained but visually distinct categories.
arXiv Detail & Related papers (2021-11-11T17:59:42Z) - AugNet: End-to-End Unsupervised Visual Representation Learning with
Image Augmentation [3.6790362352712873]
We propose AugNet, a new deep learning training paradigm to learn image features from a collection of unlabeled pictures.
Our experiments demonstrate that the method is able to represent the image in low dimensional space.
Unlike many deep-learning-based image retrieval algorithms, our approach does not require access to external annotated datasets.
arXiv Detail & Related papers (2021-06-11T09:02:30Z) - Few-Shot Learning with Part Discovery and Augmentation from Unlabeled
Images [79.34600869202373]
We show that inductive bias can be learned from a flat collection of unlabeled images, and instantiated as transferable representations among seen and unseen classes.
Specifically, we propose a novel part-based self-supervised representation learning scheme to learn transferable representations.
Our method yields impressive results, outperforming the previous best unsupervised methods by 7.74% and 9.24%.
arXiv Detail & Related papers (2021-05-25T12:22:11Z) - DetCo: Unsupervised Contrastive Learning for Object Detection [64.22416613061888]
Unsupervised contrastive learning achieves great success in learning image representations with CNN.
We present a novel contrastive learning approach, named DetCo, which fully explores the contrasts between global image and local image patches.
DetCo consistently outperforms supervised method by 1.6/1.2/1.0 AP on Mask RCNN-C4/FPN/RetinaNet with 1x schedule.
arXiv Detail & Related papers (2021-02-09T12:47:20Z) - Demystifying Contrastive Self-Supervised Learning: Invariances,
Augmentations and Dataset Biases [34.02639091680309]
Recent gains in performance come from training instance classification models, treating each image and it's augmented versions as samples of a single class.
We demonstrate that approaches like MOCO and PIRL learn occlusion-invariant representations.
Second, we demonstrate that these approaches obtain further gains from access to a clean object-centric training dataset like Imagenet.
arXiv Detail & Related papers (2020-07-28T00:11:31Z) - Improving Object Detection with Selective Self-supervised Self-training [62.792445237541145]
We study how to leverage Web images to augment human-curated object detection datasets.
We retrieve Web images by image-to-image search, which incurs less domain shift from the curated data than other search methods.
We propose a novel learning method motivated by two parallel lines of work that explore unlabeled data for image classification.
arXiv Detail & Related papers (2020-07-17T18:05:01Z) - Distilling Localization for Self-Supervised Representation Learning [82.79808902674282]
Contrastive learning has revolutionized unsupervised representation learning.
Current contrastive models are ineffective at localizing the foreground object.
We propose a data-driven approach for learning in variance to backgrounds.
arXiv Detail & Related papers (2020-04-14T16:29:42Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.