A Survey of Deep Learning for Data Caching in Edge Network
- URL: http://arxiv.org/abs/2008.07235v1
- Date: Mon, 17 Aug 2020 12:02:32 GMT
- Title: A Survey of Deep Learning for Data Caching in Edge Network
- Authors: Yantong Wang, Vasilis Friderikos
- Abstract summary: This paper summarizes the utilization of deep learning for data caching in edge network.
We first outline the typical research topics in content caching and formulate a taxonomy based on network hierarchical structure.
Then, a number of key types of deep learning algorithms are presented, ranging from supervised learning to unsupervised learning as well as reinforcement learning.
- Score: 1.9798034349981157
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The concept of edge caching provision in emerging 5G and beyond mobile
networks is a promising method to deal both with the traffic congestion problem
in the core network as well as reducing latency to access popular content. In
that respect end user demand for popular content can be satisfied by
proactively caching it at the network edge, i.e, at close proximity to the
users. In addition to model based caching schemes learning-based edge caching
optimizations has recently attracted significant attention and the aim
hereafter is to capture these recent advances for both model based and data
driven techniques in the area of proactive caching. This paper summarizes the
utilization of deep learning for data caching in edge network. We first outline
the typical research topics in content caching and formulate a taxonomy based
on network hierarchical structure. Then, a number of key types of deep learning
algorithms are presented, ranging from supervised learning to unsupervised
learning as well as reinforcement learning. Furthermore, a comparison of
state-of-the-art literature is provided from the aspects of caching topics and
deep learning methods. Finally, we discuss research challenges and future
directions of applying deep learning for caching
Related papers
- A Learning-Based Caching Mechanism for Edge Content Delivery [2.412158290827225]
5G networks and the rise of the Internet of Things (IoT) are increasingly extending into the network edge.
This shift introduces unique challenges, particularly due to the limited cache storage and the diverse request patterns at the edge.
We introduce HR-Cache, a learning-based caching framework grounded in the principles of Hazard Rate (HR) ordering.
arXiv Detail & Related papers (2024-02-05T08:06:03Z) - Deep networks for system identification: a Survey [56.34005280792013]
System identification learns mathematical descriptions of dynamic systems from input-output data.
Main aim of the identified model is to predict new data from previous observations.
We discuss architectures commonly adopted in the literature, like feedforward, convolutional, and recurrent networks.
arXiv Detail & Related papers (2023-01-30T12:38:31Z) - Accelerating Deep Learning Classification with Error-controlled
Approximate-key Caching [72.50506500576746]
We propose a novel caching paradigm, that we named approximate-key caching.
While approximate cache hits alleviate DL inference workload and increase the system throughput, they however introduce an approximation error.
We analytically model our caching system performance for classic LRU and ideal caches, we perform a trace-driven evaluation of the expected performance, and we compare the benefits of our proposed approach with the state-of-the-art similarity caching.
arXiv Detail & Related papers (2021-12-13T13:49:11Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z) - A Comprehensive Survey on Community Detection with Deep Learning [93.40332347374712]
A community reveals the features and connections of its members that are different from those in other communities in a network.
This survey devises and proposes a new taxonomy covering different categories of the state-of-the-art methods.
The main category, i.e., deep neural networks, is further divided into convolutional networks, graph attention networks, generative adversarial networks and autoencoders.
arXiv Detail & Related papers (2021-05-26T14:37:07Z) - A Survey on Reinforcement Learning-Aided Caching in Mobile Edge Networks [12.470038211838363]
Mobile networks are experiencing tremendous increase in data volume and user density.
An efficient technique to alleviate this issue is to bring the data closer to the users by exploiting the caches of edge network nodes.
The fusion of machine learning and wireless networks offers a viable way for network optimization.
arXiv Detail & Related papers (2021-05-12T10:30:56Z) - Caching Placement and Resource Allocation for Cache-Enabling UAV NOMA
Networks [87.6031308969681]
This article investigates the cache-enabling unmanned aerial vehicle (UAV) cellular networks with massive access capability supported by non-orthogonal multiple access (NOMA)
We formulate the long-term caching placement and resource allocation optimization problem for content delivery delay minimization as a Markov decision process (MDP)
We propose a Q-learning based caching placement and resource allocation algorithm, where the UAV learns and selects action with emphsoft $varepsilon$-greedy strategy to search for the optimal match between actions and states.
arXiv Detail & Related papers (2020-08-12T08:33:51Z) - Applying Machine Learning Techniques for Caching in Edge Networks: A
Comprehensive Survey [3.985352415162327]
Machine learning techniques can be applied to predict content popularity based on user preferences.
These applications of machine learning can help identify relevant content for an edge network.
This article investigates the application of machine learning techniques for in-network caching in edge networks.
arXiv Detail & Related papers (2020-06-21T09:31:56Z) - Reinforcement Learning for Caching with Space-Time Popularity Dynamics [61.55827760294755]
caching is envisioned to play a critical role in next-generation networks.
To intelligently prefetch and store contents, a cache node should be able to learn what and when to cache.
This chapter presents a versatile reinforcement learning based approach for near-optimal caching policy design.
arXiv Detail & Related papers (2020-05-19T01:23:51Z) - PA-Cache: Evolving Learning-Based Popularity-Aware Content Caching in
Edge Networks [14.939950326112045]
We propose an evolving learning-based content caching policy, named PA-Cache in edge networks.
It adaptively learns time-varying content popularity and determines which contents should be replaced when the cache is full.
We extensively evaluate the performance of our proposed PA-Cache on real-world traces from a large online video-on-demand service provider.
arXiv Detail & Related papers (2020-02-20T15:38:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.