Deep Networks with Fast Retraining
- URL: http://arxiv.org/abs/2008.07387v2
- Date: Mon, 4 Jan 2021 23:37:54 GMT
- Title: Deep Networks with Fast Retraining
- Authors: Wandong Zhang (1 and 2), Yimin Yang (2 and 3), Jonathan Wu (1) ((1)
University of Windsor, (2) Lakehead University, (3) Vector Institute for
Artificial Intelligence)
- Abstract summary: This paper proposes a novel MP inverse-based fast retraining strategy for deep convolutional neural network (DCNN) learning.
In each training, a random learning strategy that controls the number of convolutional layers trained in the backward pass is first utilized.
Then, an MP inverse-based batch-by-batch learning strategy, which enables the network to be implemented without access to industrial-scale computational resources, is developed.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Recent work [1] has utilized Moore-Penrose (MP) inverse in deep convolutional
neural network (DCNN) learning, which achieves better generalization
performance over the DCNN with a stochastic gradient descent (SGD) pipeline.
However, Yang's work has not gained much popularity in practice due to its high
sensitivity of hyper-parameters and stringent demands of computational
resources. To enhance its applicability, this paper proposes a novel MP
inverse-based fast retraining strategy. In each training epoch, a random
learning strategy that controls the number of convolutional layers trained in
the backward pass is first utilized. Then, an MP inverse-based batch-by-batch
learning strategy, which enables the network to be implemented without access
to industrial-scale computational resources, is developed to refine the dense
layer parameters. Experimental results empirically demonstrate that fast
retraining is a unified strategy that can be used for all DCNNs. Compared to
other learning strategies, the proposed learning pipeline has robustness
against the hyper-parameters, and the requirement of computational resources is
significantly reduced. [1] Y. Yang, J. Wu, X. Feng, and A. Thangarajah,
"Recomputation of dense layers for the perfor-238mance improvement of dcnn,"
IEEE Trans. Pattern Anal. Mach. Intell., 2019.
Related papers
- Gradient-Free Training of Recurrent Neural Networks using Random Perturbations [1.1742364055094265]
Recurrent neural networks (RNNs) hold immense potential for computations due to their Turing completeness and sequential processing capabilities.
Backpropagation through time (BPTT), the prevailing method, extends the backpropagation algorithm by unrolling the RNN over time.
BPTT suffers from significant drawbacks, including the need to interleave forward and backward phases and store exact gradient information.
We present a new approach to perturbation-based learning in RNNs whose performance is competitive with BPTT.
arXiv Detail & Related papers (2024-05-14T21:15:29Z) - Approximated Likelihood Ratio: A Forward-Only and Parallel Framework for Boosting Neural Network Training [30.452060061499523]
We introduce an approximation technique for the likelihood ratio (LR) method to alleviate computational and memory demands in gradient estimation.
Experiments demonstrate the effectiveness of the approximation technique in neural network training.
arXiv Detail & Related papers (2024-03-18T23:23:50Z) - Properties and Potential Applications of Random Functional-Linked Types
of Neural Networks [81.56822938033119]
Random functional-linked neural networks (RFLNNs) offer an alternative way of learning in deep structure.
This paper gives some insights into the properties of RFLNNs from the viewpoints of frequency domain.
We propose a method to generate a BLS network with better performance, and design an efficient algorithm for solving Poison's equation.
arXiv Detail & Related papers (2023-04-03T13:25:22Z) - Intelligence Processing Units Accelerate Neuromorphic Learning [52.952192990802345]
Spiking neural networks (SNNs) have achieved orders of magnitude improvement in terms of energy consumption and latency.
We present an IPU-optimized release of our custom SNN Python package, snnTorch.
arXiv Detail & Related papers (2022-11-19T15:44:08Z) - Learning in Feedback-driven Recurrent Spiking Neural Networks using
full-FORCE Training [4.124948554183487]
We propose a supervised training procedure for RSNNs, where a second network is introduced only during the training.
The proposed training procedure consists of generating targets for both recurrent and readout layers.
We demonstrate the improved performance and noise robustness of the proposed full-FORCE training procedure to model 8 dynamical systems.
arXiv Detail & Related papers (2022-05-26T19:01:19Z) - Selfish Sparse RNN Training [13.165729746380816]
We propose an approach to train sparse RNNs with a fixed parameter count in one single run, without compromising performance.
We achieve state-of-the-art sparse training results with various datasets on Penn TreeBank and Wikitext-2.
arXiv Detail & Related papers (2021-01-22T10:45:40Z) - Phase Retrieval using Expectation Consistent Signal Recovery Algorithm
based on Hypernetwork [73.94896986868146]
Phase retrieval is an important component in modern computational imaging systems.
Recent advances in deep learning have opened up a new possibility for robust and fast PR.
We develop a novel framework for deep unfolding to overcome the existing limitations.
arXiv Detail & Related papers (2021-01-12T08:36:23Z) - A Meta-Learning Approach to the Optimal Power Flow Problem Under
Topology Reconfigurations [69.73803123972297]
We propose a DNN-based OPF predictor that is trained using a meta-learning (MTL) approach.
The developed OPF-predictor is validated through simulations using benchmark IEEE bus systems.
arXiv Detail & Related papers (2020-12-21T17:39:51Z) - A Practical Layer-Parallel Training Algorithm for Residual Networks [41.267919563145604]
gradient-based algorithms for training ResNets typically require a forward pass of the input data, followed by back-propagating the objective gradient to update parameters.
We propose a novel serial-parallel hybrid training strategy to enable the use of data augmentation, together with downsampling filters to reduce the communication cost.
arXiv Detail & Related papers (2020-09-03T06:03:30Z) - Optimizing Memory Placement using Evolutionary Graph Reinforcement
Learning [56.83172249278467]
We introduce Evolutionary Graph Reinforcement Learning (EGRL), a method designed for large search spaces.
We train and validate our approach directly on the Intel NNP-I chip for inference.
We additionally achieve 28-78% speed-up compared to the native NNP-I compiler on all three workloads.
arXiv Detail & Related papers (2020-07-14T18:50:12Z) - Learning Low-rank Deep Neural Networks via Singular Vector Orthogonality
Regularization and Singular Value Sparsification [53.50708351813565]
We propose SVD training, the first method to explicitly achieve low-rank DNNs during training without applying SVD on every step.
We empirically show that SVD training can significantly reduce the rank of DNN layers and achieve higher reduction on computation load under the same accuracy.
arXiv Detail & Related papers (2020-04-20T02:40:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.