Siloed Federated Learning for Multi-Centric Histopathology Datasets
- URL: http://arxiv.org/abs/2008.07424v1
- Date: Mon, 17 Aug 2020 15:49:30 GMT
- Title: Siloed Federated Learning for Multi-Centric Histopathology Datasets
- Authors: Mathieu Andreux, Jean Ogier du Terrail, Constance Beguier, Eric W.
Tramel
- Abstract summary: This paper proposes a novel federated learning approach for deep learning architectures in the medical domain.
Local-statistic batch normalization (BN) layers are introduced, resulting in collaboratively-trained, yet center-specific models.
We benchmark the proposed method on the classification of tumorous histopathology image patches extracted from the Camelyon16 and Camelyon17 datasets.
- Score: 0.17842332554022694
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: While federated learning is a promising approach for training deep learning
models over distributed sensitive datasets, it presents new challenges for
machine learning, especially when applied in the medical domain where
multi-centric data heterogeneity is common. Building on previous domain
adaptation works, this paper proposes a novel federated learning approach for
deep learning architectures via the introduction of local-statistic batch
normalization (BN) layers, resulting in collaboratively-trained, yet
center-specific models. This strategy improves robustness to data heterogeneity
while also reducing the potential for information leaks by not sharing the
center-specific layer activation statistics. We benchmark the proposed method
on the classification of tumorous histopathology image patches extracted from
the Camelyon16 and Camelyon17 datasets. We show that our approach compares
favorably to previous state-of-the-art methods, especially for transfer
learning across datasets.
Related papers
- LoRKD: Low-Rank Knowledge Decomposition for Medical Foundation Models [59.961172635689664]
"Knowledge Decomposition" aims to improve the performance on specific medical tasks.
We propose a novel framework named Low-Rank Knowledge Decomposition (LoRKD)
LoRKD explicitly separates gradients from different tasks by incorporating low-rank expert modules and efficient knowledge separation convolution.
arXiv Detail & Related papers (2024-09-29T03:56:21Z) - Synthetic Data for Robust Stroke Segmentation [0.0]
Current deep learning-based approaches to lesion segmentation in neuroimaging often depend on high-resolution images and extensive annotated data.
This paper introduces a novel synthetic data framework tailored for stroke lesion segmentation.
Our approach trains models with label maps from healthy and stroke datasets, facilitating segmentation across both normal and pathological tissue.
arXiv Detail & Related papers (2024-04-02T13:42:29Z) - Tackling Computational Heterogeneity in FL: A Few Theoretical Insights [68.8204255655161]
We introduce and analyse a novel aggregation framework that allows for formalizing and tackling computational heterogeneous data.
Proposed aggregation algorithms are extensively analyzed from a theoretical, and an experimental prospective.
arXiv Detail & Related papers (2023-07-12T16:28:21Z) - Learnable Weight Initialization for Volumetric Medical Image Segmentation [66.3030435676252]
We propose a learnable weight-based hybrid medical image segmentation approach.
Our approach is easy to integrate into any hybrid model and requires no external training data.
Experiments on multi-organ and lung cancer segmentation tasks demonstrate the effectiveness of our approach.
arXiv Detail & Related papers (2023-06-15T17:55:05Z) - Learning from Temporal Spatial Cubism for Cross-Dataset Skeleton-based
Action Recognition [88.34182299496074]
Action labels are only available on a source dataset, but unavailable on a target dataset in the training stage.
We utilize a self-supervision scheme to reduce the domain shift between two skeleton-based action datasets.
By segmenting and permuting temporal segments or human body parts, we design two self-supervised learning classification tasks.
arXiv Detail & Related papers (2022-07-17T07:05:39Z) - Deep learning based domain adaptation for mitochondria segmentation on
EM volumes [5.682594415267948]
We present three unsupervised domain adaptation strategies to improve mitochondria segmentation in the target domain.
We propose a new training stopping criterion based on morphological priors obtained exclusively in the source domain.
In the absence of validation labels, monitoring our proposed morphology-based metric is an intuitive and effective way to stop the training process and select in average optimal models.
arXiv Detail & Related papers (2022-02-22T09:49:25Z) - Invariance Learning in Deep Neural Networks with Differentiable Laplace
Approximations [76.82124752950148]
We develop a convenient gradient-based method for selecting the data augmentation.
We use a differentiable Kronecker-factored Laplace approximation to the marginal likelihood as our objective.
arXiv Detail & Related papers (2022-02-22T02:51:11Z) - Hybridization of Capsule and LSTM Networks for unsupervised anomaly
detection on multivariate data [0.0]
This paper introduces a novel NN architecture which hybridises the Long-Short-Term-Memory (LSTM) and Capsule Networks into a single network.
The proposed method uses an unsupervised learning technique to overcome the issues with finding large volumes of labelled training data.
arXiv Detail & Related papers (2022-02-11T10:33:53Z) - Consistency and Diversity induced Human Motion Segmentation [231.36289425663702]
We propose a novel Consistency and Diversity induced human Motion (CDMS) algorithm.
Our model factorizes the source and target data into distinct multi-layer feature spaces.
A multi-mutual learning strategy is carried out to reduce the domain gap between the source and target data.
arXiv Detail & Related papers (2022-02-10T06:23:56Z) - Handling Data Heterogeneity with Generative Replay in Collaborative
Learning for Medical Imaging [21.53220262343254]
We present a novel generative replay strategy to address the challenge of data heterogeneity in collaborative learning methods.
A primary model learns the desired task, and an auxiliary "generative replay model" either synthesizes images that closely resemble the input images or helps extract latent variables.
The generative replay strategy is flexible to use, can either be incorporated into existing collaborative learning methods to improve their capability of handling data heterogeneity across institutions, or be used as a novel and individual collaborative learning framework (termed FedReplay) to reduce communication cost.
arXiv Detail & Related papers (2021-06-24T17:39:55Z) - Multi-site fMRI Analysis Using Privacy-preserving Federated Learning and
Domain Adaptation: ABIDE Results [13.615292855384729]
To train a high-quality deep learning model, the aggregation of a significant amount of patient information is required.
Due to the need to protect the privacy of patient data, it is hard to assemble a central database from multiple institutions.
Federated learning allows for population-level models to be trained without centralizing entities' data.
arXiv Detail & Related papers (2020-01-16T04:49:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.