Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration
- URL: http://arxiv.org/abs/2008.07737v2
- Date: Thu, 22 Oct 2020 02:30:08 GMT
- Title: Provably Efficient Reward-Agnostic Navigation with Linear Value
Iteration
- Authors: Andrea Zanette, Alessandro Lazaric, Mykel J. Kochenderfer, Emma
Brunskill
- Abstract summary: We show how iteration under a more standard notion of low inherent Bellman error, typically employed in least-square value-style algorithms, can provide strong PAC guarantees on learning a near optimal value function.
We present a computationally tractable algorithm for the reward-free setting and show how it can be used to learn a near optimal policy for any (linear) reward function.
- Score: 143.43658264904863
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: There has been growing progress on theoretical analyses for provably
efficient learning in MDPs with linear function approximation, but much of the
existing work has made strong assumptions to enable exploration by conventional
exploration frameworks. Typically these assumptions are stronger than what is
needed to find good solutions in the batch setting. In this work, we show how
under a more standard notion of low inherent Bellman error, typically employed
in least-square value iteration-style algorithms, we can provide strong PAC
guarantees on learning a near optimal value function provided that the linear
space is sufficiently "explorable". We present a computationally tractable
algorithm for the reward-free setting and show how it can be used to learn a
near optimal policy for any (linear) reward function, which is revealed only
once learning has completed. If this reward function is also estimated from the
samples gathered during pure exploration, our results also provide same-order
PAC guarantees on the performance of the resulting policy for this setting.
Related papers
- Offline Reinforcement Learning with Additional Covering Distributions [0.0]
We study learning optimal policies from a logged dataset, i.e., offline RL, with function approximation.
We show that sample-efficient offline RL for general MDPs is possible with only a partial coverage dataset and weak realizable function classes.
arXiv Detail & Related papers (2023-05-22T03:31:03Z) - Improved Regret for Efficient Online Reinforcement Learning with Linear
Function Approximation [69.0695698566235]
We study reinforcement learning with linear function approximation and adversarially changing cost functions.
We present a computationally efficient policy optimization algorithm for the challenging general setting of unknown dynamics and bandit feedback.
arXiv Detail & Related papers (2023-01-30T17:26:39Z) - Sample Efficient Deep Reinforcement Learning via Local Planning [21.420851589712626]
This work focuses on sample-efficient deep reinforcement learning (RL) with a simulator.
We propose an algorithmic framework, named uncertainty-first local planning (UFLP), that takes advantage of this property.
We demonstrate that this simple procedure can dramatically improve the sample cost of several baseline RL algorithms on difficult exploration tasks.
arXiv Detail & Related papers (2023-01-29T23:17:26Z) - Maximum-Likelihood Inverse Reinforcement Learning with Finite-Time
Guarantees [56.848265937921354]
Inverse reinforcement learning (IRL) aims to recover the reward function and the associated optimal policy.
Many algorithms for IRL have an inherently nested structure.
We develop a novel single-loop algorithm for IRL that does not compromise reward estimation accuracy.
arXiv Detail & Related papers (2022-10-04T17:13:45Z) - On Reward-Free RL with Kernel and Neural Function Approximations:
Single-Agent MDP and Markov Game [140.19656665344917]
We study the reward-free RL problem, where an agent aims to thoroughly explore the environment without any pre-specified reward function.
We tackle this problem under the context of function approximation, leveraging powerful function approximators.
We establish the first provably efficient reward-free RL algorithm with kernel and neural function approximators.
arXiv Detail & Related papers (2021-10-19T07:26:33Z) - MADE: Exploration via Maximizing Deviation from Explored Regions [48.49228309729319]
In online reinforcement learning (RL), efficient exploration remains challenging in high-dimensional environments with sparse rewards.
We propose a new exploration approach via textitmaximizing the deviation of the occupancy of the next policy from the explored regions.
Our approach significantly improves sample efficiency over state-of-the-art methods.
arXiv Detail & Related papers (2021-06-18T17:57:00Z) - Efficient Exploration of Reward Functions in Inverse Reinforcement
Learning via Bayesian Optimization [43.51553742077343]
inverse reinforcement learning (IRL) is relevant to a variety of tasks including value alignment and robot learning from demonstration.
This paper presents an IRL framework called Bayesian optimization-IRL (BO-IRL) which identifies multiple solutions consistent with the expert demonstrations.
arXiv Detail & Related papers (2020-11-17T10:17:45Z) - Zeroth-Order Supervised Policy Improvement [94.0748002906652]
Policy gradient (PG) algorithms have been widely used in reinforcement learning (RL)
We propose Zeroth-Order Supervised Policy Improvement (ZOSPI)
ZOSPI exploits the estimated value function $Q$ globally while preserving the local exploitation of the PG methods.
arXiv Detail & Related papers (2020-06-11T16:49:23Z) - Adaptive Approximate Policy Iteration [22.915651391812187]
We present a learning scheme which enjoys a $tildeO(T2/3)$ regret bound for undiscounted, continuing learning in uniformly ergodic MDPs.
This is an improvement over the best existing bound of $tildeO(T3/4)$ for the average-reward case with function approximation.
arXiv Detail & Related papers (2020-02-08T02:27:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.