Person image generation with semantic attention network for person
re-identification
- URL: http://arxiv.org/abs/2008.07884v1
- Date: Tue, 18 Aug 2020 12:18:51 GMT
- Title: Person image generation with semantic attention network for person
re-identification
- Authors: Meichen Liu, Kejun Wang, Juihang Ji and Shuzhi Sam Ge
- Abstract summary: We propose a novel person pose-guided image generation method, which is called the semantic attention network.
The network consists of several semantic attention blocks, where each block attends to preserve and update the pose code and the clothing textures.
Compared with other methods, our network can characterize better body shape and keep clothing attributes, simultaneously.
- Score: 9.30413920076019
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Pose variation is one of the key factors which prevents the network from
learning a robust person re-identification (Re-ID) model. To address this
issue, we propose a novel person pose-guided image generation method, which is
called the semantic attention network. The network consists of several semantic
attention blocks, where each block attends to preserve and update the pose code
and the clothing textures. The introduction of the binary segmentation mask and
the semantic parsing is important for seamlessly stitching foreground and
background in the pose-guided image generation. Compared with other methods,
our network can characterize better body shape and keep clothing attributes,
simultaneously. Our synthesized image can obtain better appearance and shape
consistency related to the original image. Experimental results show that our
approach is competitive with respect to both quantitative and qualitative
results on Market-1501 and DeepFashion. Furthermore, we conduct extensive
evaluations by using person re-identification (Re-ID) systems trained with the
pose-transferred person based augmented data. The experiment shows that our
approach can significantly enhance the person Re-ID accuracy.
Related papers
- StableIdentity: Inserting Anybody into Anywhere at First Sight [57.99693188913382]
We propose StableIdentity, which allows identity-consistent recontextualization with just one face image.
We are the first to directly inject the identity learned from a single image into video/3D generation without finetuning.
arXiv Detail & Related papers (2024-01-29T09:06:15Z) - RetriBooru: Leakage-Free Retrieval of Conditions from Reference Images for Subject-Driven Generation [30.143033020296183]
Diffusion-based methods have demonstrated capabilities in generating a diverse array of high-quality images.
We propose a multi-level, same-identity dataset RetriBooru, which groups anime characters by both face and cloth identities.
We introduce a new concept composition task, where the conditioning encoder learns to retrieve different concepts from several reference images.
arXiv Detail & Related papers (2023-12-05T06:04:16Z) - When StyleGAN Meets Stable Diffusion: a $\mathscr{W}_+$ Adapter for
Personalized Image Generation [60.305112612629465]
Text-to-image diffusion models have excelled in producing diverse, high-quality, and photo-realistic images.
We present a novel use of the extended StyleGAN embedding space $mathcalW_+$ to achieve enhanced identity preservation and disentanglement for diffusion models.
Our method adeptly generates personalized text-to-image outputs that are not only compatible with prompt descriptions but also amenable to common StyleGAN editing directions.
arXiv Detail & Related papers (2023-11-29T09:05:14Z) - Identity-Guided Collaborative Learning for Cloth-Changing Person
Reidentification [29.200286257496714]
We propose a novel identity-guided collaborative learning scheme (IGCL) for cloth-changing person ReID.
First, we design a novel clothing attention stream to reasonably reduce the interference caused by clothing information.
Second, we propose a human semantic attention and body jigsaw stream to highlight the human semantic information and simulate different poses of the same identity.
Third, a pedestrian identity enhancement stream is further proposed to enhance the identity importance and extract more favorable identity robust features.
arXiv Detail & Related papers (2023-04-10T06:05:54Z) - Semantic-Aware Generation for Self-Supervised Visual Representation
Learning [116.5814634936371]
We advocate for Semantic-aware Generation (SaGe) to facilitate richer semantics rather than details to be preserved in the generated image.
SaGe complements the target network with view-specific features and thus alleviates the semantic degradation brought by intensive data augmentations.
We execute SaGe on ImageNet-1K and evaluate the pre-trained models on five downstream tasks including nearest neighbor test, linear classification, and fine-scaled image recognition.
arXiv Detail & Related papers (2021-11-25T16:46:13Z) - Pose-driven Attention-guided Image Generation for Person
Re-Identification [39.605062525247135]
We propose an end-to-end pose-driven generative adversarial network to generate multiple poses of a person.
A semantic-consistency loss is proposed to preserve the semantic information of the person during pose transfer.
We show that by incorporating the proposed approach in a person re-identification framework, realistic pose transferred images and state-of-the-art re-identification results can be achieved.
arXiv Detail & Related papers (2021-04-28T14:02:24Z) - Structure-aware Person Image Generation with Pose Decomposition and
Semantic Correlation [29.727033198797518]
We propose a structure-aware flow based method for high-quality person image generation.
We decompose the human body into different semantic parts and apply different networks to predict the flow fields for these parts separately.
Our method can generate high-quality results under large pose discrepancy and outperforms state-of-the-art methods in both qualitative and quantitative comparisons.
arXiv Detail & Related papers (2021-02-05T03:07:57Z) - PoNA: Pose-guided Non-local Attention for Human Pose Transfer [105.14398322129024]
We propose a new human pose transfer method using a generative adversarial network (GAN) with simplified cascaded blocks.
Our model generates sharper and more realistic images with rich details, while having fewer parameters and faster speed.
arXiv Detail & Related papers (2020-12-13T12:38:29Z) - VAE/WGAN-Based Image Representation Learning For Pose-Preserving
Seamless Identity Replacement In Facial Images [15.855376604558977]
We present a novel variational generative adversarial network (VGAN) based on Wasserstein loss.
We show that our network can be used to perform pose-preserving identity morphing and identity-preserving pose morphing.
arXiv Detail & Related papers (2020-03-02T03:35:59Z) - Uncertainty-Aware Multi-Shot Knowledge Distillation for Image-Based
Object Re-Identification [93.39253443415392]
We propose exploiting the multi-shots of the same identity to guide the feature learning of each individual image.
It consists of a teacher network (T-net) that learns the comprehensive features from multiple images of the same object, and a student network (S-net) that takes a single image as input.
We validate the effectiveness of our approach on the popular vehicle re-id and person re-id datasets.
arXiv Detail & Related papers (2020-01-15T09:39:05Z) - Fine-grained Image-to-Image Transformation towards Visual Recognition [102.51124181873101]
We aim at transforming an image with a fine-grained category to synthesize new images that preserve the identity of the input image.
We adopt a model based on generative adversarial networks to disentangle the identity related and unrelated factors of an image.
Experiments on the CompCars and Multi-PIE datasets demonstrate that our model preserves the identity of the generated images much better than the state-of-the-art image-to-image transformation models.
arXiv Detail & Related papers (2020-01-12T05:26:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.