Deep Neural Networks for automatic extraction of features in time series
satellite images
- URL: http://arxiv.org/abs/2008.08432v1
- Date: Mon, 17 Aug 2020 09:26:52 GMT
- Title: Deep Neural Networks for automatic extraction of features in time series
satellite images
- Authors: Gael Kamdem De Teyou, Yuliya Tarabalka, Isabelle Manighetti, Rafael
Almar, Sebastien Tripod
- Abstract summary: We exploit both temporal and spatial information provided by Landsat Sentinel, SPOT, and other time series images to generate land cover maps.
Experimental results show that the Pleiades temporal information allows increasing the accuracy of land cover classification, thus producing up-to-date maps that can help in identifying changes on earth.
- Score: 3.3598755777055374
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many earth observation programs such as Landsat, Sentinel, SPOT, and Pleiades
produce huge volume of medium to high resolution multi-spectral images every
day that can be organized in time series. In this work, we exploit both
temporal and spatial information provided by these images to generate land
cover maps. For this purpose, we combine a fully convolutional neural network
with a convolutional long short-term memory. Implementation details of the
proposed spatio-temporal neural network architecture are provided. Experimental
results show that the temporal information provided by time series images
allows increasing the accuracy of land cover classification, thus producing
up-to-date maps that can help in identifying changes on earth.
Related papers
- Deep Multimodal Fusion for Semantic Segmentation of Remote Sensing Earth Observation Data [0.08192907805418582]
This paper proposes a late fusion deep learning model (LF-DLM) for semantic segmentation.
One branch integrates detailed textures from aerial imagery captured by UNetFormer with a Multi-Axis Vision Transformer (ViT) backbone.
The other branch captures complex-temporal dynamics from the Sentinel-2 satellite imageMax time series using a U-ViNet with Temporal Attention (U-TAE)
arXiv Detail & Related papers (2024-10-01T07:50:37Z) - Deep Learning for Satellite Image Time Series Analysis: A Review [5.882962965835289]
This review presents a summary of the state-of-the-art methods of modelling environmental, agricultural, and other Earth observation variables from SITS data using deep learning methods.
arXiv Detail & Related papers (2024-04-05T07:44:17Z) - Temporal Embeddings: Scalable Self-Supervised Temporal Representation
Learning from Spatiotemporal Data for Multimodal Computer Vision [1.4127889233510498]
A novel approach is proposed to stratify landscape based on mobility activity time series.
The pixel-wise embeddings are converted to image-like channels that can be used for task-based, multimodal modeling.
arXiv Detail & Related papers (2023-10-16T02:53:29Z) - Fast Monocular Scene Reconstruction with Global-Sparse Local-Dense Grids [84.90863397388776]
We propose to directly use signed distance function (SDF) in sparse voxel block grids for fast and accurate scene reconstruction without distances.
Our globally sparse and locally dense data structure exploits surfaces' spatial sparsity, enables cache-friendly queries, and allows direct extensions to multi-modal data.
Experiments show that our approach is 10x faster in training and 100x faster in rendering while achieving comparable accuracy to state-of-the-art neural implicit methods.
arXiv Detail & Related papers (2023-05-22T16:50:19Z) - TempSAL -- Uncovering Temporal Information for Deep Saliency Prediction [64.63645677568384]
We introduce a novel saliency prediction model that learns to output saliency maps in sequential time intervals.
Our approach locally modulates the saliency predictions by combining the learned temporal maps.
Our code will be publicly available on GitHub.
arXiv Detail & Related papers (2023-01-05T22:10:16Z) - HyperTime: Implicit Neural Representation for Time Series [131.57172578210256]
Implicit neural representations (INRs) have recently emerged as a powerful tool that provides an accurate and resolution-independent encoding of data.
In this paper, we analyze the representation of time series using INRs, comparing different activation functions in terms of reconstruction accuracy and training convergence speed.
We propose a hypernetwork architecture that leverages INRs to learn a compressed latent representation of an entire time series dataset.
arXiv Detail & Related papers (2022-08-11T14:05:51Z) - SatMAE: Pre-training Transformers for Temporal and Multi-Spectral
Satellite Imagery [74.82821342249039]
We present SatMAE, a pre-training framework for temporal or multi-spectral satellite imagery based on Masked Autoencoder (MAE)
To leverage temporal information, we include a temporal embedding along with independently masking image patches across time.
arXiv Detail & Related papers (2022-07-17T01:35:29Z) - Spatio-Temporal Recurrent Networks for Event-Based Optical Flow
Estimation [47.984368369734995]
We introduce a novel recurrent encoding-decoding neural network architecture for event-based optical flow estimation.
The network is end-to-end trained with self-supervised learning on the Multi-Vehicle Stereo Event Camera dataset.
We have shown that it outperforms all the existing state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2021-09-10T13:37:37Z) - MVSNeRF: Fast Generalizable Radiance Field Reconstruction from
Multi-View Stereo [52.329580781898116]
We present MVSNeRF, a novel neural rendering approach that can efficiently reconstruct neural radiance fields for view synthesis.
Unlike prior works on neural radiance fields that consider per-scene optimization on densely captured images, we propose a generic deep neural network that can reconstruct radiance fields from only three nearby input views via fast network inference.
arXiv Detail & Related papers (2021-03-29T13:15:23Z) - A deep network approach to multitemporal cloud detection [15.39911641413792]
We present a deep learning model with temporal memory to detect clouds in image time series acquired by the Seviri imager mounted on the Meteosat Second Generation (MSG) satellite.
The model provides pixel-level cloud maps with related confidence and propagates information in time via a recurrent neural network structure.
arXiv Detail & Related papers (2020-12-09T08:58:36Z) - Boundary Regularized Building Footprint Extraction From Satellite Images
Using Deep Neural Network [6.371173732947292]
We propose a novel deep neural network, which enables to jointly detect building instance and regularize noisy building boundary shapes from a single satellite imagery.
Our model can accomplish multi-tasks of object localization, recognition, semantic labelling and geometric shape extraction simultaneously.
arXiv Detail & Related papers (2020-06-23T17:24:09Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.