Yet Another Intermediate-Level Attack
- URL: http://arxiv.org/abs/2008.08847v1
- Date: Thu, 20 Aug 2020 09:14:04 GMT
- Title: Yet Another Intermediate-Level Attack
- Authors: Qizhang Li, Yiwen Guo, Hao Chen
- Abstract summary: The transferability of adversarial examples across deep neural network (DNN) models is the crux of a spectrum of black-box attacks.
We propose a novel method to enhance the black-box transferability of baseline adversarial examples.
- Score: 31.055720988792416
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The transferability of adversarial examples across deep neural network (DNN)
models is the crux of a spectrum of black-box attacks. In this paper, we
propose a novel method to enhance the black-box transferability of baseline
adversarial examples. By establishing a linear mapping of the
intermediate-level discrepancies (between a set of adversarial inputs and their
benign counterparts) for predicting the evoked adversarial loss, we aim to take
full advantage of the optimization procedure of multi-step baseline attacks. We
conducted extensive experiments to verify the effectiveness of our method on
CIFAR-100 and ImageNet. Experimental results demonstrate that it outperforms
previous state-of-the-arts considerably. Our code is at
https://github.com/qizhangli/ila-plus-plus.
Related papers
- Boosting Adversarial Transferability via Fusing Logits of Top-1
Decomposed Feature [36.78292952798531]
We propose a Singular Value Decomposition (SVD)-based feature-level attack method.
Our approach is inspired by the discovery that eigenvectors associated with the larger singular values from the middle layer features exhibit superior generalization and attention properties.
arXiv Detail & Related papers (2023-05-02T12:27:44Z) - Improving Adversarial Transferability via Intermediate-level
Perturbation Decay [79.07074710460012]
We develop a novel intermediate-level method that crafts adversarial examples within a single stage of optimization.
Experimental results show that it outperforms state-of-the-arts by large margins in attacking various victim models.
arXiv Detail & Related papers (2023-04-26T09:49:55Z) - Making Substitute Models More Bayesian Can Enhance Transferability of
Adversarial Examples [89.85593878754571]
transferability of adversarial examples across deep neural networks is the crux of many black-box attacks.
We advocate to attack a Bayesian model for achieving desirable transferability.
Our method outperforms recent state-of-the-arts by large margins.
arXiv Detail & Related papers (2023-02-10T07:08:13Z) - Versatile Weight Attack via Flipping Limited Bits [68.45224286690932]
We study a novel attack paradigm, which modifies model parameters in the deployment stage.
Considering the effectiveness and stealthiness goals, we provide a general formulation to perform the bit-flip based weight attack.
We present two cases of the general formulation with different malicious purposes, i.e., single sample attack (SSA) and triggered samples attack (TSA)
arXiv Detail & Related papers (2022-07-25T03:24:58Z) - Distributed Adversarial Training to Robustify Deep Neural Networks at
Scale [100.19539096465101]
Current deep neural networks (DNNs) are vulnerable to adversarial attacks, where adversarial perturbations to the inputs can change or manipulate classification.
To defend against such attacks, an effective approach, known as adversarial training (AT), has been shown to mitigate robust training.
We propose a large-batch adversarial training framework implemented over multiple machines.
arXiv Detail & Related papers (2022-06-13T15:39:43Z) - Targeted Attack against Deep Neural Networks via Flipping Limited Weight
Bits [55.740716446995805]
We study a novel attack paradigm, which modifies model parameters in the deployment stage for malicious purposes.
Our goal is to misclassify a specific sample into a target class without any sample modification.
By utilizing the latest technique in integer programming, we equivalently reformulate this BIP problem as a continuous optimization problem.
arXiv Detail & Related papers (2021-02-21T03:13:27Z) - Adversarial example generation with AdaBelief Optimizer and Crop
Invariance [8.404340557720436]
Adversarial attacks can be an important method to evaluate and select robust models in safety-critical applications.
We propose AdaBelief Iterative Fast Gradient Method (ABI-FGM) and Crop-Invariant attack Method (CIM) to improve the transferability of adversarial examples.
Our method has higher success rates than state-of-the-art gradient-based attack methods.
arXiv Detail & Related papers (2021-02-07T06:00:36Z) - Generalizing Adversarial Examples by AdaBelief Optimizer [6.243028964381449]
We propose an AdaBelief iterative Fast Gradient Sign Method to generalize adversarial examples.
Compared with state-of-the-art attack methods, our proposed method can generate adversarial examples effectively in the white-box setting.
The transfer rate is 7%-21% higher than latest attack methods.
arXiv Detail & Related papers (2021-01-25T07:39:16Z) - Backpropagating Linearly Improves Transferability of Adversarial
Examples [31.808770437120536]
Vulnerability of deep neural networks (DNNs) to adversarial examples has drawn great attention from the community.
In this paper, we study the transferability of such examples, which lays the foundation of many black-box attacks on DNNs.
We introduce linear backpropagation (LinBP), a method that performs backpropagation in a more linear fashion using off-the-shelf attacks that exploit gradients.
arXiv Detail & Related papers (2020-12-07T08:40:56Z) - Perturbing Across the Feature Hierarchy to Improve Standard and Strict
Blackbox Attack Transferability [100.91186458516941]
We consider the blackbox transfer-based targeted adversarial attack threat model in the realm of deep neural network (DNN) image classifiers.
We design a flexible attack framework that allows for multi-layer perturbations and demonstrates state-of-the-art targeted transfer performance.
We analyze why the proposed methods outperform existing attack strategies and show an extension of the method in the case when limited queries to the blackbox model are allowed.
arXiv Detail & Related papers (2020-04-29T16:00:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.