A Deep Prediction Network for Understanding Advertiser Intent and
Satisfaction
- URL: http://arxiv.org/abs/2008.08931v1
- Date: Thu, 20 Aug 2020 15:08:50 GMT
- Title: A Deep Prediction Network for Understanding Advertiser Intent and
Satisfaction
- Authors: Liyi Guo, Rui Lu, Haoqi Zhang, Junqi Jin, Zhenzhe Zheng, Fan Wu, Jin
Li, Haiyang Xu, Han Li, Wenkai Lu, Jian Xu, Kun Gai
- Abstract summary: We propose a novel Deep Satisfaction Prediction Network (DSPN), which models advertiser intent and satisfaction simultaneously.
Our proposed DSPN outperforms state-of-the-art baselines and has stable performance in terms of AUC in the online environment.
- Score: 41.000912016821246
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: For e-commerce platforms such as Taobao and Amazon, advertisers play an
important role in the entire digital ecosystem: their behaviors explicitly
influence users' browsing and shopping experience; more importantly,
advertiser's expenditure on advertising constitutes a primary source of
platform revenue. Therefore, providing better services for advertisers is
essential for the long-term prosperity for e-commerce platforms. To achieve
this goal, the ad platform needs to have an in-depth understanding of
advertisers in terms of both their marketing intents and satisfaction over the
advertising performance, based on which further optimization could be carried
out to service the advertisers in the correct direction. In this paper, we
propose a novel Deep Satisfaction Prediction Network (DSPN), which models
advertiser intent and satisfaction simultaneously. It employs a two-stage
network structure where advertiser intent vector and satisfaction are jointly
learned by considering the features of advertiser's action information and
advertising performance indicators. Experiments on an Alibaba advertisement
dataset and online evaluations show that our proposed DSPN outperforms
state-of-the-art baselines and has stable performance in terms of AUC in the
online environment. Further analyses show that DSPN not only predicts
advertisers' satisfaction accurately but also learns an explainable advertiser
intent, revealing the opportunities to optimize the advertising performance
further.
Related papers
- Click Without Compromise: Online Advertising Measurement via Per User Differential Privacy [22.38999810583601]
We introduce Ads-BPC, a novel user-level differential privacy protection scheme for advertising measurement results.
Ads-BPC achieves a 25% to 50% increase in accuracy over existing streaming DP mechanisms applied to advertising measurement.
arXiv Detail & Related papers (2024-06-04T16:31:19Z) - Discrimination through Image Selection by Job Advertisers on Facebook [79.21648699199648]
We propose and investigate the prevalence of a new means for discrimination in job advertising.
It combines both targeting and delivery -- through the disproportionate representation or exclusion of people of certain demographics in job ad images.
We use the Facebook Ad Library to demonstrate the prevalence of this practice.
arXiv Detail & Related papers (2023-06-13T03:43:58Z) - AI-Driven Contextual Advertising: A Technology Report and Implication
Analysis [0.0]
Programmatic advertising consists in automated auctioning of digital ad space.
The interest in contextual advertising is in part a counterreaction to the current dependency on personal data.
Developments in Artificial Intelligence (AI) allow for a deeper semantic understanding of context.
arXiv Detail & Related papers (2022-05-02T13:44:58Z) - Online Advertising Revenue Forecasting: An Interpretable Deep Learning
Approach [0.0]
We propose a novel attention-based architecture to predict publishers' advertising revenues.
Our results outperform several benchmark deep-learning time-series forecast models over multiple time horizons.
arXiv Detail & Related papers (2021-11-16T23:55:02Z) - We Know What You Want: An Advertising Strategy Recommender System for
Online Advertising [26.261736843187045]
We propose a recommender system for dynamic bidding strategy recommendation on display advertising platform.
We use a neural network as the agent to predict the advertisers' demands based on their profile and historical adoption behaviors.
Online evaluations show that the system can optimize the advertisers' advertising performance.
arXiv Detail & Related papers (2021-05-25T17:06:59Z) - Multi-Channel Sequential Behavior Networks for User Modeling in Online
Advertising [4.964012641964141]
This paper presents Multi-Channel Sequential Behavior Network (MC-SBN), a deep learning approach for embedding users and ads in a semantic space.
Our proposed user encoder architecture summarizes user activities from multiple input channels--such as previous search queries, visited pages, or clicked ads--into a user vector.
The results demonstrate that MC-SBN can improve the ranking of relevant ads and boost the performance of both click prediction and conversion prediction.
arXiv Detail & Related papers (2020-12-27T06:13:29Z) - A novel auction system for selecting advertisements in Real-Time bidding [68.8204255655161]
Real-Time Bidding is a new Internet advertising system that has become very popular in recent years.
We propose an alternative betting system with a new approach that not only considers the economic aspect but also other relevant factors for the functioning of the advertising system.
arXiv Detail & Related papers (2020-10-22T18:36:41Z) - Learning to Infer User Hidden States for Online Sequential Advertising [52.169666997331724]
We propose our Deep Intents Sequential Advertising (DISA) method to address these issues.
The key part of interpretability is to understand a consumer's purchase intent which is, however, unobservable (called hidden states)
arXiv Detail & Related papers (2020-09-03T05:12:26Z) - Dynamic Knapsack Optimization Towards Efficient Multi-Channel Sequential
Advertising [52.3825928886714]
We formulate the sequential advertising strategy optimization as a dynamic knapsack problem.
We propose a theoretically guaranteed bilevel optimization framework, which significantly reduces the solution space of the original optimization space.
To improve the exploration efficiency of reinforcement learning, we also devise an effective action space reduction approach.
arXiv Detail & Related papers (2020-06-29T18:50:35Z) - Do Interruptions Pay Off? Effects of Interruptive Ads on Consumers
Willingness to Pay [79.9312329825761]
We present the results of a study designed to measure the impact of interruptive advertising on consumers willingness to pay for products bearing the advertiser's brand.
Our results contribute to the research on the economic impact of advertising, and introduce a method of measuring actual (as opposed to self-reported) willingness to pay in experimental marketing research.
arXiv Detail & Related papers (2020-05-14T09:26:57Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.