Spatial Language Representation with Multi-Level Geocoding
- URL: http://arxiv.org/abs/2008.09236v1
- Date: Fri, 21 Aug 2020 00:05:08 GMT
- Title: Spatial Language Representation with Multi-Level Geocoding
- Authors: Sayali Kulkarni, Shailee Jain, Mohammad Javad Hosseini, Jason
Baldridge, Eugene Ie, Li Zhang
- Abstract summary: We present a multi-level geocoding model (MLG) that learns to associate texts to geographic locations.
We show that MLG obtains state-of-the-art results for toponym resolution on three English datasets.
- Score: 15.376256625525391
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: We present a multi-level geocoding model (MLG) that learns to associate texts
to geographic locations. The Earth's surface is represented using space-filling
curves that decompose the sphere into a hierarchy of similarly sized,
non-overlapping cells. MLG balances generalization and accuracy by combining
losses across multiple levels and predicting cells at each level
simultaneously. Without using any dataset-specific tuning, we show that MLG
obtains state-of-the-art results for toponym resolution on three English
datasets. Furthermore, it obtains large gains without any knowledge base
metadata, demonstrating that it can effectively learn the connection between
text spans and coordinates - and thus can be extended to toponymns not present
in knowledge bases.
Related papers
- G3: An Effective and Adaptive Framework for Worldwide Geolocalization Using Large Multi-Modality Models [40.69217368870192]
We propose a novel framework for worldwide geolocalization based on Retrieval-Augmented Generation (RAG)
G3 consists of three steps, i.e., Geo-alignment, Geo-diversification, and Geo-verification.
Experiments on two well-established datasets verify the superiority of G3 compared to other state-of-the-art methods.
arXiv Detail & Related papers (2024-05-23T15:37:06Z) - Towards Natural Language-Guided Drones: GeoText-1652 Benchmark with Spatial Relation Matching [60.645802236700035]
Navigating drones through natural language commands remains challenging due to the dearth of accessible multi-modal datasets.
We introduce GeoText-1652, a new natural language-guided geo-localization benchmark.
This dataset is systematically constructed through an interactive human-computer process.
arXiv Detail & Related papers (2023-11-21T17:52:30Z) - GeoLM: Empowering Language Models for Geospatially Grounded Language
Understanding [45.36562604939258]
This paper introduces GeoLM, a language model that enhances the understanding of geo-entities in natural language.
We demonstrate that GeoLM exhibits promising capabilities in supporting toponym recognition, toponym linking, relation extraction, and geo-entity typing.
arXiv Detail & Related papers (2023-10-23T01:20:01Z) - GeoLLM: Extracting Geospatial Knowledge from Large Language Models [49.20315582673223]
We present GeoLLM, a novel method that can effectively extract geospatial knowledge from large language models.
We demonstrate the utility of our approach across multiple tasks of central interest to the international community, including the measurement of population density and economic livelihoods.
Our experiments reveal that LLMs are remarkably sample-efficient, rich in geospatial information, and robust across the globe.
arXiv Detail & Related papers (2023-10-10T00:03:23Z) - GeoCLIP: Clip-Inspired Alignment between Locations and Images for
Effective Worldwide Geo-localization [61.10806364001535]
Worldwide Geo-localization aims to pinpoint the precise location of images taken anywhere on Earth.
Existing approaches divide the globe into discrete geographic cells, transforming the problem into a classification task.
We propose GeoCLIP, a novel CLIP-inspired Image-to-GPS retrieval approach that enforces alignment between the image and its corresponding GPS locations.
arXiv Detail & Related papers (2023-09-27T20:54:56Z) - GeoGLUE: A GeoGraphic Language Understanding Evaluation Benchmark [56.08664336835741]
We propose a GeoGraphic Language Understanding Evaluation benchmark, named GeoGLUE.
We collect data from open-released geographic resources and introduce six natural language understanding tasks.
We pro vide evaluation experiments and analysis of general baselines, indicating the effectiveness and significance of the GeoGLUE benchmark.
arXiv Detail & Related papers (2023-05-11T03:21:56Z) - Multi-Level Graph Convolutional Network with Automatic Graph Learning
for Hyperspectral Image Classification [63.56018768401328]
We propose a Multi-level Graph Convolutional Network (GCN) with Automatic Graph Learning method (MGCN-AGL) for HSI classification.
By employing attention mechanism to characterize the importance among spatially neighboring regions, the most relevant information can be adaptively incorporated to make decisions.
Our MGCN-AGL encodes the long range dependencies among image regions based on the expressive representations that have been produced at local level.
arXiv Detail & Related papers (2020-09-19T09:26:20Z) - Fine-grained Video-Text Retrieval with Hierarchical Graph Reasoning [72.52804406378023]
Cross-modal retrieval between videos and texts has attracted growing attentions due to the rapid emergence of videos on the web.
To improve fine-grained video-text retrieval, we propose a Hierarchical Graph Reasoning model, which decomposes video-text matching into global-to-local levels.
arXiv Detail & Related papers (2020-03-01T03:44:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.