Domain Adaptation of Learned Features for Visual Localization
- URL: http://arxiv.org/abs/2008.09310v1
- Date: Fri, 21 Aug 2020 05:17:32 GMT
- Title: Domain Adaptation of Learned Features for Visual Localization
- Authors: Sungyong Baik, Hyo Jin Kim, Tianwei Shen, Eddy Ilg, Kyoung Mu Lee,
Chris Sweeney
- Abstract summary: We tackle the problem of visual localization under changing conditions, such as time of day, weather, and seasons.
Recent learned local features based on deep neural networks have shown superior performance over classical hand-crafted local features.
We present a novel and practical approach, where only a few examples are needed to reduce the domain gap.
- Score: 60.6817896667435
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We tackle the problem of visual localization under changing conditions, such
as time of day, weather, and seasons. Recent learned local features based on
deep neural networks have shown superior performance over classical
hand-crafted local features. However, in a real-world scenario, there often
exists a large domain gap between training and target images, which can
significantly degrade the localization accuracy. While existing methods utilize
a large amount of data to tackle the problem, we present a novel and practical
approach, where only a few examples are needed to reduce the domain gap. In
particular, we propose a few-shot domain adaptation framework for learned local
features that deals with varying conditions in visual localization. The
experimental results demonstrate the superior performance over baselines, while
using a scarce number of training examples from the target domain.
Related papers
- Long-Term Invariant Local Features via Implicit Cross-Domain
Correspondences [79.21515035128832]
We conduct a thorough analysis of the performance of current state-of-the-art feature extraction networks under various domain changes.
We propose a novel data-centric method, Implicit Cross-Domain Correspondences (iCDC)
iCDC represents the same environment with multiple Neural Radiance Fields, each fitting the scene under individual visual domains.
arXiv Detail & Related papers (2023-11-06T18:53:01Z) - Domain-Invariant Proposals based on a Balanced Domain Classifier for
Object Detection [8.583307102907295]
Object recognition from images means to automatically find object(s) of interest and to return their category and location information.
Benefiting from research on deep learning, like convolutional neural networks(CNNs) and generative adversarial networks, the performance in this field has been improved significantly.
mismatching distributions, i.e., domain shifts, lead to a significant performance drop.
arXiv Detail & Related papers (2022-02-12T00:21:27Z) - Unsupervised Domain Adaptation for Spatio-Temporal Action Localization [69.12982544509427]
S-temporal action localization is an important problem in computer vision.
We propose an end-to-end unsupervised domain adaptation algorithm.
We show that significant performance gain can be achieved when spatial and temporal features are adapted separately or jointly.
arXiv Detail & Related papers (2020-10-19T04:25:10Z) - Domain Adaptation for Semantic Parsing [68.81787666086554]
We propose a novel semantic for domain adaptation, where we have much fewer annotated data in the target domain compared to the source domain.
Our semantic benefits from a two-stage coarse-to-fine framework, thus can provide different and accurate treatments for the two stages.
Experiments on a benchmark dataset show that our method consistently outperforms several popular domain adaptation strategies.
arXiv Detail & Related papers (2020-06-23T14:47:41Z) - Spatial Attention Pyramid Network for Unsupervised Domain Adaptation [66.75008386980869]
Unsupervised domain adaptation is critical in various computer vision tasks.
We design a new spatial attention pyramid network for unsupervised domain adaptation.
Our method performs favorably against the state-of-the-art methods by a large margin.
arXiv Detail & Related papers (2020-03-29T09:03:23Z) - Cross-domain Object Detection through Coarse-to-Fine Feature Adaptation [62.29076080124199]
This paper proposes a novel coarse-to-fine feature adaptation approach to cross-domain object detection.
At the coarse-grained stage, foreground regions are extracted by adopting the attention mechanism, and aligned according to their marginal distributions.
At the fine-grained stage, we conduct conditional distribution alignment of foregrounds by minimizing the distance of global prototypes with the same category but from different domains.
arXiv Detail & Related papers (2020-03-23T13:40:06Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.