Robust and Efficient Swarm Communication Topologies for Hostile
Environments
- URL: http://arxiv.org/abs/2008.09575v1
- Date: Fri, 21 Aug 2020 16:38:35 GMT
- Title: Robust and Efficient Swarm Communication Topologies for Hostile
Environments
- Authors: Vipul Mann, Abhishek Sivaram, Laya Das, Venkat Venkatasubramanian
- Abstract summary: We present a study of the impact of loss of agents on the performance of such algorithms as a function of the initial network configuration.
The results reveal interesting trade-offs between efficiency, robustness, and performance for different topologies.
- Score: 0.4588028371034406
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Swarm Intelligence-based optimization techniques combine systematic
exploration of the search space with information available from neighbors and
rely strongly on communication among agents. These algorithms are typically
employed to solve problems where the function landscape is not adequately known
and there are multiple local optima that could result in premature convergence
for other algorithms. Applications of such algorithms can be found in
communication systems involving design of networks for efficient information
dissemination to a target group, targeted drug-delivery where drug molecules
search for the affected site before diffusing, and high-value target
localization with a network of drones. In several of such applications, the
agents face a hostile environment that can result in loss of agents during the
search. Such a loss changes the communication topology of the agents and hence
the information available to agents, ultimately influencing the performance of
the algorithm. In this paper, we present a study of the impact of loss of
agents on the performance of such algorithms as a function of the initial
network configuration. We use particle swarm optimization to optimize an
objective function with multiple sub-optimal regions in a hostile environment
and study its performance for a range of network topologies with loss of
agents. The results reveal interesting trade-offs between efficiency,
robustness, and performance for different topologies that are subsequently
leveraged to discover general properties of networks that maximize performance.
Moreover, networks with small-world properties are seen to maximize performance
under hostile conditions.
Related papers
- Optimization and Learning in Open Multi-Agent Systems [1.0249620437941]
This article introduces a novel distributed algorithm to address a broad class of problems in "open networks"
The proposed algorithm is used to solve dynamic consensus or tracking problems on different metrics of interest.
arXiv Detail & Related papers (2025-01-28T10:40:09Z) - Asynchronous Message-Passing and Zeroth-Order Optimization Based Distributed Learning with a Use-Case in Resource Allocation in Communication Networks [11.182443036683225]
Distributed learning and adaptation have received significant interest and found wide-ranging applications in machine learning signal processing.
This paper specifically focuses on a scenario where agents collaborate towards a common task.
Agents, acting as transmitters, collaboratively train their individual policies to maximize a global reward.
arXiv Detail & Related papers (2023-11-08T11:12:27Z) - Attention Based Feature Fusion For Multi-Agent Collaborative Perception [4.120288148198388]
We propose an intermediate collaborative perception solution in the form of a graph attention network (GAT)
The proposed approach develops an attention-based aggregation strategy to fuse intermediate representations exchanged among multiple connected agents.
This approach adaptively highlights important regions in the intermediate feature maps at both the channel and spatial levels, resulting in improved object detection precision.
arXiv Detail & Related papers (2023-05-03T12:06:11Z) - Compressed Regression over Adaptive Networks [58.79251288443156]
We derive the performance achievable by a network of distributed agents that solve, adaptively and in the presence of communication constraints, a regression problem.
We devise an optimized allocation strategy where the parameters necessary for the optimization can be learned online by the agents.
arXiv Detail & Related papers (2023-04-07T13:41:08Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - CONetV2: Efficient Auto-Channel Size Optimization for CNNs [35.951376988552695]
This work introduces a method that is efficient in computationally constrained environments by examining the micro-search space of channel size.
In tackling channel-size optimization, we design an automated algorithm to extract the dependencies within different connected layers of the network.
We also introduce a novel metric that highly correlates with test accuracy and enables analysis of individual network layers.
arXiv Detail & Related papers (2021-10-13T16:17:19Z) - Unsupervised Domain-adaptive Hash for Networks [81.49184987430333]
Domain-adaptive hash learning has enjoyed considerable success in the computer vision community.
We develop an unsupervised domain-adaptive hash learning method for networks, dubbed UDAH.
arXiv Detail & Related papers (2021-08-20T12:09:38Z) - Loss Function Discovery for Object Detection via Convergence-Simulation
Driven Search [101.73248560009124]
We propose an effective convergence-simulation driven evolutionary search algorithm, CSE-Autoloss, for speeding up the search progress.
We conduct extensive evaluations of loss function search on popular detectors and validate the good generalization capability of searched losses.
Our experiments show that the best-discovered loss function combinations outperform default combinations by 1.1% and 0.8% in terms of mAP for two-stage and one-stage detectors.
arXiv Detail & Related papers (2021-02-09T08:34:52Z) - Gaussian Process Based Message Filtering for Robust Multi-Agent
Cooperation in the Presence of Adversarial Communication [5.161531917413708]
We consider the problem of providing robustness to adversarial communication in multi-agent systems.
We propose a communication architecture based on Graph Neural Networks (GNNs)
We show that our filtering method is able to reduce the impact that non-cooperative agents cause.
arXiv Detail & Related papers (2020-12-01T14:21:58Z) - On the use of local structural properties for improving the efficiency
of hierarchical community detection methods [77.34726150561087]
We study how local structural network properties can be used as proxies to improve the efficiency of hierarchical community detection.
We also check the performance impact of network prunings as an ancillary tactic to make hierarchical community detection more efficient.
arXiv Detail & Related papers (2020-09-15T00:16:12Z) - Distributed Optimization, Averaging via ADMM, and Network Topology [0.0]
We study the connection between network topology and convergence rates for different algorithms on a real world problem of sensor localization.
We also show interesting connections between ADMM and lifted Markov chains besides providing an explicitly characterization of its convergence.
arXiv Detail & Related papers (2020-09-05T21:44:39Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.