Self-Competitive Neural Networks
- URL: http://arxiv.org/abs/2008.09824v1
- Date: Sat, 22 Aug 2020 12:28:35 GMT
- Title: Self-Competitive Neural Networks
- Authors: Iman Saberi, Fathiyeh Faghih
- Abstract summary: Deep Neural Networks (DNNs) have improved the accuracy of classification problems in lots of applications.
One of the challenges in training a DNN is its need to be fed by an enriched dataset to increase its accuracy and avoid it suffering from overfitting.
Recently, researchers have worked extensively to propose methods for data augmentation.
In this paper, we generate adversarial samples to refine the Domains of Attraction (DoAs) of each class. In this approach, at each stage, we use the model learned by the primary and generated adversarial data (up to that stage) to manipulate the primary data in a way that look complicated to
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep Neural Networks (DNNs) have improved the accuracy of classification
problems in lots of applications. One of the challenges in training a DNN is
its need to be fed by an enriched dataset to increase its accuracy and avoid it
suffering from overfitting. One way to improve the generalization of DNNs is to
augment the training data with new synthesized adversarial samples. Recently,
researchers have worked extensively to propose methods for data augmentation.
In this paper, we generate adversarial samples to refine the Domains of
Attraction (DoAs) of each class. In this approach, at each stage, we use the
model learned by the primary and generated adversarial data (up to that stage)
to manipulate the primary data in a way that look complicated to the DNN. The
DNN is then retrained using the augmented data and then it again generates
adversarial data that are hard to predict for itself. As the DNN tries to
improve its accuracy by competing with itself (generating hard samples and then
learning them), the technique is called Self-Competitive Neural Network (SCNN).
To generate such samples, we pose the problem as an optimization task, where
the network weights are fixed and use a gradient descent based method to
synthesize adversarial samples that are on the boundary of their true labels
and the nearest wrong labels. Our experimental results show that data
augmentation using SCNNs can significantly increase the accuracy of the
original network. As an example, we can mention improving the accuracy of a CNN
trained with 1000 limited training data of MNIST dataset from 94.26% to 98.25%.
Related papers
- ScoreMix: A Scalable Augmentation Strategy for Training GANs with
Limited Data [93.06336507035486]
Generative Adversarial Networks (GANs) typically suffer from overfitting when limited training data is available.
We present ScoreMix, a novel and scalable data augmentation approach for various image synthesis tasks.
arXiv Detail & Related papers (2022-10-27T02:55:15Z) - Shift-Robust GNNs: Overcoming the Limitations of Localized Graph
Training data [52.771780951404565]
Shift-Robust GNN (SR-GNN) is designed to account for distributional differences between biased training data and the graph's true inference distribution.
We show that SR-GNN outperforms other GNN baselines by accuracy, eliminating at least (40%) of the negative effects introduced by biased training data.
arXiv Detail & Related papers (2021-08-02T18:00:38Z) - Evaluating Deep Neural Network Ensembles by Majority Voting cum
Meta-Learning scheme [3.351714665243138]
We propose an ensemble of seven independent Deep Neural Networks (DNNs) for a new data instance.
One-seventh of the data is deleted and replenished by bootstrap sampling from the remaining samples.
All the algorithms in this paper have been tested on five benchmark datasets.
arXiv Detail & Related papers (2021-05-09T03:10:56Z) - S2-BNN: Bridging the Gap Between Self-Supervised Real and 1-bit Neural
Networks via Guided Distribution Calibration [74.5509794733707]
We present a novel guided learning paradigm from real-valued to distill binary networks on the final prediction distribution.
Our proposed method can boost the simple contrastive learning baseline by an absolute gain of 5.515% on BNNs.
Our method achieves substantial improvement over the simple contrastive learning baseline, and is even comparable to many mainstream supervised BNN methods.
arXiv Detail & Related papers (2021-02-17T18:59:28Z) - Deep Time Delay Neural Network for Speech Enhancement with Full Data
Learning [60.20150317299749]
This paper proposes a deep time delay neural network (TDNN) for speech enhancement with full data learning.
To make full use of the training data, we propose a full data learning method for speech enhancement.
arXiv Detail & Related papers (2020-11-11T06:32:37Z) - ASFGNN: Automated Separated-Federated Graph Neural Network [17.817867271722093]
We propose an automated Separated-Federated Graph Neural Network (ASFGNN) learning paradigm.
We conduct experiments on benchmark datasets and the results demonstrate that ASFGNN significantly outperforms the naive federated GNN.
arXiv Detail & Related papers (2020-11-06T09:21:34Z) - Temporal Calibrated Regularization for Robust Noisy Label Learning [60.90967240168525]
Deep neural networks (DNNs) exhibit great success on many tasks with the help of large-scale well annotated datasets.
However, labeling large-scale data can be very costly and error-prone so that it is difficult to guarantee the annotation quality.
We propose a Temporal Calibrated Regularization (TCR) in which we utilize the original labels and the predictions in the previous epoch together.
arXiv Detail & Related papers (2020-07-01T04:48:49Z) - Boosting Deep Neural Networks with Geometrical Prior Knowledge: A Survey [77.99182201815763]
Deep Neural Networks (DNNs) achieve state-of-the-art results in many different problem settings.
DNNs are often treated as black box systems, which complicates their evaluation and validation.
One promising field, inspired by the success of convolutional neural networks (CNNs) in computer vision tasks, is to incorporate knowledge about symmetric geometrical transformations.
arXiv Detail & Related papers (2020-06-30T14:56:05Z) - Passive Batch Injection Training Technique: Boosting Network Performance
by Injecting Mini-Batches from a different Data Distribution [39.8046809855363]
This work presents a novel training technique for deep neural networks that makes use of additional data from a distribution that is different from that of the original input data.
To the best of our knowledge, this is the first work that makes use of different data distribution to aid the training of convolutional neural networks (CNNs)
arXiv Detail & Related papers (2020-06-08T08:17:32Z) - One Versus all for deep Neural Network Incertitude (OVNNI)
quantification [12.734278426543332]
We propose a new technique to quantify the epistemic uncertainty of data easily.
This method consists in mixing the predictions of an ensemble of DNNs trained to classify One class vs All the other classes (OVA) with predictions from a standard DNN trained to perform All vs All (AVA) classification.
arXiv Detail & Related papers (2020-06-01T14:06:12Z) - Enabling Deep Spiking Neural Networks with Hybrid Conversion and Spike
Timing Dependent Backpropagation [10.972663738092063]
Spiking Neural Networks (SNNs) operate with asynchronous discrete events (or spikes)
We present a computationally-efficient training technique for deep SNNs.
We achieve top-1 accuracy of 65.19% for ImageNet dataset on SNN with 250 time steps, which is 10X faster compared to converted SNNs with similar accuracy.
arXiv Detail & Related papers (2020-05-04T19:30:43Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.