Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency
- URL: http://arxiv.org/abs/2008.10208v2
- Date: Sat, 3 Jul 2021 10:02:51 GMT
- Title: Multi-view Graph Learning by Joint Modeling of Consistency and
Inconsistency
- Authors: Youwei Liang, Dong Huang, Chang-Dong Wang, and Philip S. Yu
- Abstract summary: Graph learning has emerged as a promising technique for multi-view clustering with its ability to learn a unified and robust graph from multiple views.
We propose a new multi-view graph learning framework, which for the first time simultaneously models multi-view consistency and multi-view inconsistency in a unified objective function.
Experiments on twelve multi-view datasets have demonstrated the robustness and efficiency of the proposed approach.
- Score: 65.76554214664101
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Graph learning has emerged as a promising technique for multi-view clustering
with its ability to learn a unified and robust graph from multiple views.
However, existing graph learning methods mostly focus on the multi-view
consistency issue, yet often neglect the inconsistency across multiple views,
which makes them vulnerable to possibly low-quality or noisy datasets. To
overcome this limitation, we propose a new multi-view graph learning framework,
which for the first time simultaneously and explicitly models multi-view
consistency and multi-view inconsistency in a unified objective function,
through which the consistent and inconsistent parts of each single-view graph
as well as the unified graph that fuses the consistent parts can be iteratively
learned. Though optimizing the objective function is NP-hard, we design a
highly efficient optimization algorithm which is able to obtain an approximate
solution with linear time complexity in the number of edges in the unified
graph. Furthermore, our multi-view graph learning approach can be applied to
both similarity graphs and dissimilarity graphs, which lead to two graph
fusion-based variants in our framework. Experiments on twelve multi-view
datasets have demonstrated the robustness and efficiency of the proposed
approach.
Related papers
- Multiview Graph Learning with Consensus Graph [24.983233822595274]
Graph topology inference is a significant task in many application domains.
Many modern datasets are heterogeneous or mixed and involve multiple related graphs, i.e., multiview graphs.
We propose an alternative method based on consensus regularization, where views are ensured to be similar.
It is also employed to infer the functional brain connectivity networks of multiple subjects from their electroencephalogram (EEG) recordings.
arXiv Detail & Related papers (2024-01-24T19:35:54Z) - Cross-view Graph Contrastive Representation Learning on Partially
Aligned Multi-view Data [52.491074276133325]
Multi-view representation learning has developed rapidly over the past decades and has been applied in many fields.
We propose a new cross-view graph contrastive learning framework, which integrates multi-view information to align data and learn latent representations.
Experiments conducted on several real datasets demonstrate the effectiveness of the proposed method on the clustering and classification tasks.
arXiv Detail & Related papers (2022-11-08T09:19:32Z) - Efficient Multi-view Clustering via Unified and Discrete Bipartite Graph
Learning [15.617206773324952]
This paper presents an efficient multi-view clustering approach via unified and discrete bipartite graph learning (UDBGL)
An anchor-based subspace learning is incorporated to learn the view-specific bipartite graphs from multiple views.
The Laplacian rank constraint is imposed to ensure that the fused bipartite graph has discrete cluster structures.
arXiv Detail & Related papers (2022-09-09T08:51:01Z) - Latent Heterogeneous Graph Network for Incomplete Multi-View Learning [57.49776938934186]
We propose a novel Latent Heterogeneous Graph Network (LHGN) for incomplete multi-view learning.
By learning a unified latent representation, a trade-off between consistency and complementarity among different views is implicitly realized.
To avoid any inconsistencies between training and test phase, a transductive learning technique is applied based on graph learning for classification tasks.
arXiv Detail & Related papers (2022-08-29T15:14:21Z) - Multi-view Contrastive Graph Clustering [12.463334005083379]
We propose a generic framework to cluster multi-view attributed graph data.
Inspired by the success of contrastive learning, we propose multi-view contrastive graph clustering (MCGC) method.
Our simple approach outperforms existing deep learning-based methods.
arXiv Detail & Related papers (2021-10-22T15:22:42Z) - Effective and Efficient Graph Learning for Multi-view Clustering [173.8313827799077]
We propose an effective and efficient graph learning model for multi-view clustering.
Our method exploits the view-similar between graphs of different views by the minimization of tensor Schatten p-norm.
Our proposed algorithm is time-economical and obtains the stable results and scales well with the data size.
arXiv Detail & Related papers (2021-08-15T13:14:28Z) - Group Contrastive Self-Supervised Learning on Graphs [101.45974132613293]
We study self-supervised learning on graphs using contrastive methods.
We argue that contrasting graphs in multiple subspaces enables graph encoders to capture more abundant characteristics.
arXiv Detail & Related papers (2021-07-20T22:09:21Z) - Multiple Graph Learning for Scalable Multi-view Clustering [26.846642220480863]
We propose an efficient multiple graph learning model via a small number of anchor points and tensor Schatten p-norm minimization.
Specifically, we construct a hidden and tractable large graph by anchor graph for each view.
We develop an efficient algorithm, which scales linearly with the data size, to solve our proposed model.
arXiv Detail & Related papers (2021-06-29T13:10:56Z) - Auto-weighted Multi-view Feature Selection with Graph Optimization [90.26124046530319]
We propose a novel unsupervised multi-view feature selection model based on graph learning.
The contributions are threefold: (1) during the feature selection procedure, the consensus similarity graph shared by different views is learned.
Experiments on various datasets demonstrate the superiority of the proposed method compared with the state-of-the-art methods.
arXiv Detail & Related papers (2021-04-11T03:25:25Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.