Thermal biphotons
- URL: http://arxiv.org/abs/2008.10636v3
- Date: Sun, 13 Mar 2022 08:10:10 GMT
- Title: Thermal biphotons
- Authors: Ohad Lib, Yaron Bromberg
- Abstract summary: We propose and demonstrate an incoherent light source based on phase-randomized spatially entangled photons.
Our work reflects new insights on the coherence properties of thermal light in the presence of entanglement.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The observation of the Hanbury Brown and Twiss (HBT) effect with thermal
light marked the birth of quantum optics. All the thermal sources considered to
date did not feature quantum signatures of light, as they consisted of
independent emitters that emit uncorrelated photons. Here, we propose and
demonstrate an incoherent light source based on phase-randomized spatially
entangled photons, which we coin thermal biphotons. We show that in contrast to
thermal light, the width of the HBT peak for thermal biphotons is determined by
their correlations, leading to violation of the Siegert relation and breakdown
of the speckle-fluctuations interpretation. We further provide an alternative
interpretation of the results by drawing a connection between the HBT effect
and coherent backscattering of light. Finally, we discuss the role of spatial
entanglement in the observed results, deriving a relation between the Schmidt
number and the degree of violation of the Siegert relation under the
double-Gaussian approximation of spontaneous parametric down conversion (SPDC).
Our work reflects new insights on the coherence properties of thermal light in
the presence of entanglement, paving the way for entanglement certification
using disorder averaged measurements.
Related papers
- Wave-particle correlations in multiphoton resonances of coherent
light-matter interaction [0.0]
We discuss the conditional measurement of field amplitudes by a nonclassical photon sequence in the Jaynes-Cummings (JC) model under multiphoton operation.
arXiv Detail & Related papers (2024-02-14T16:51:54Z) - The effect of thermal photons on exceptional points in coupled
resonators [0.0]
We analyse two quantum systems with hidden parity-time (PT) symmetry.
One is an optical device, whereas another is a superconducting microwave-frequency device.
We show that the non-Hermitian Hamiltonians of both systems can be tuned to reach an exceptional point.
arXiv Detail & Related papers (2023-05-14T13:02:52Z) - Entanglement of annihilation photons [141.5628276096321]
We present the results of a new experimental study of the quantum entanglement of photon pairs produced in positron-electron annihilation at rest.
Despite numerous measurements, there is still no experimental proof of the entanglement of photons.
arXiv Detail & Related papers (2022-10-14T08:21:55Z) - Two-photon emission in detuned resonance fluorescence [0.0]
We discuss two-photon correlations from the side peaks that are formed when a two-level system emitter is driven coherently.
We show that their combination leads to a neat picture compatible with perturbative two-photon scattering.
This should help to control, enhance and open new regimes of multiphoton emission.
arXiv Detail & Related papers (2022-10-07T17:59:38Z) - Quantum asymmetry and noisy multi-mode interferometry [55.41644538483948]
Quantum asymmetry is a physical resource which coincides with the amount of coherence between the eigenspaces of a generator.
We show that the asymmetry may emphincrease as a result of a emphdecrease of coherence inside a degenerate subspace.
arXiv Detail & Related papers (2021-07-23T07:30:57Z) - Distinguishability and "which pathway" information in multidimensional
interferometric spectroscopy with a single entangled photon-pair [0.0]
Photon exchange-phase and degree of distinguishability have not been widely utilized in quantum-enhanced applications.
We show that even at low degree entanglement, when a two-photon wave-function is coupled to matter, it is encoded with a reliable "which pathway?" information.
We find that quantum-light interferometry facilitates utterly different set of time-delay variables, which are unbound by uncertainty to the inverse bandwidth of the wave-packet.
arXiv Detail & Related papers (2021-07-12T07:19:58Z) - Analysis of photon characteristics in anticorrelation of a
Hong-Ou-Mandel dip for on-demand quantum correlation control [0.0]
The Hong-Ou-Mandel (HOM) dip is the most important test tool for direct proof of entanglement between paired photons.
This study sheds light on deterministic quantum correlation control and opens the door to potential applications of on-demand quantum information science.
arXiv Detail & Related papers (2021-05-25T05:00:49Z) - Auto-heterodyne characterization of narrow-band photon pairs [68.8204255655161]
We describe a technique to measure photon pair joint spectra by detecting the time-correlation beat note when non-degenerate photon pairs interfere at a beamsplitter.
The technique is well suited to characterize pairs of photons, each of which can interact with a single atomic species.
arXiv Detail & Related papers (2021-01-08T18:21:30Z) - Temperature insensitive type II quasi-phasematched spontaneous
parametric downconversion [62.997667081978825]
The temperature dependence of the refractive indices of potassium titanyl phosphate (KTP) are shown to enable quasi-phasematched type II spontaneous parametric downconversion.
We demonstrate the effect experimentally, observing temperature-insensitive degenerate emission at 1326nm, within the telecommunications O band.
This result has practical applications in the development of entangled photon sources for resource-constrained environments.
arXiv Detail & Related papers (2020-12-09T16:14:15Z) - Quantum Borrmann effect for dissipation-immune photon-photon
correlations [137.6408511310322]
We study theoretically the second-order correlation function $g(2)(t)$ for photons transmitted through a periodic Bragg-spaced array of superconducting qubits, coupled to a waveguide.
We demonstrate that photon bunching and anti-bunching persist much longer than both radiative and non-radiative lifetimes of a single qubit.
arXiv Detail & Related papers (2020-09-29T14:37:04Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.