Self-consistent M{\o}ller-Plesset Perturbation Theory For Excited States
- URL: http://arxiv.org/abs/2008.10777v2
- Date: Mon, 31 Aug 2020 21:10:12 GMT
- Title: Self-consistent M{\o}ller-Plesset Perturbation Theory For Excited States
- Authors: Hong-Zhou Ye and Troy Van Voorhis
- Abstract summary: We explore the possibility of correcting HF excited states using Moller-Plesset perturbation theory to the second order.
Among various PT2 variants, we find that the restricted open-shell MP2 (ROMP2) gives excitation energies comparable to the best density functional theory results.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: In quantum chemistry, obtaining a system's mean-field solution and
incorporating electron correlation in a post Hartree-Fock (HF) manner comprise
one of the standard protocols for ground-state calculations. In principle, this
scheme can also describe excited states but is not widely used at present,
primarily due to the difficulty of locating the mean-field excited states. With
recent developments in excited-state orbital relaxation, self-consistent
excited-state solutions can now be located routinely at various levels of
theory. In this work, we explore the possibility of correcting HF excited
states using M{\o}ller-Plesset perturbation theory to the second order. Among
various PT2 variants, we find that the restricted open-shell MP2 (ROMP2) gives
excitation energies comparable to the best density functional theory results,
delivering $\sim 0.2$ eV mean unsigned error over a wide range of
single-configuration state function excitations, at only non-iterative $O(N^5)$
computational scaling.
Related papers
- Generation of complete graph states in a spin-$1/2$ Heisenberg chain
with a globally optimized magnetic field [0.0]
We introduce a method for generating multiparticle complete graph states using a spin$1/2$ Heisenberg $XX$ chain subjected to a time-varying magnetic field.
Our scheme relies exclusively on nearest-neighbor interactions between atoms, with real-time magnetic field formation facilitated by quantum optimal control theory.
arXiv Detail & Related papers (2024-01-03T21:32:35Z) - Mechanism for particle fractionalization and universal edge physics in
quantum Hall fluids [58.720142291102135]
We advance a second-quantization framework that helps reveal an exact fusion mechanism for particle fractionalization in FQH fluids.
We also uncover the fundamental structure behind the condensation of non-local operators characterizing topological order in the lowest-Landau-level (LLL)
arXiv Detail & Related papers (2021-10-12T18:00:00Z) - Einstein-Podolsky-Rosen uncertainty limits for bipartite multimode
states [0.0]
Correlations of two-party $(N, textvs,1)$-mode states are examined by using the variances of a pair of suitable EPR-like observables.
The analysis of the minimal properly normalized sums of these variances yields necessary conditions of separability and EPR unsteerability.
arXiv Detail & Related papers (2021-07-02T13:11:00Z) - Partitioning dysprosium's electronic spin to reveal entanglement in
non-classical states [55.41644538483948]
We report on an experimental study of entanglement in dysprosium's electronic spin.
Our findings open up the possibility to engineer novel types of entangled atomic ensembles.
arXiv Detail & Related papers (2021-04-29T15:02:22Z) - Effective Theory for the Measurement-Induced Phase Transition of Dirac
Fermions [0.0]
A wave function exposed to measurements undergoes pure state dynamics.
For many-particle systems, the competition of these different elements of dynamics can give rise to a scenario similar to quantum phase transitions.
A key finding is that this field theory decouples into one set of degrees of freedom that heats up indefinitely.
arXiv Detail & Related papers (2021-02-16T19:00:00Z) - Bose-Einstein condensate soliton qubit states for metrological
applications [58.720142291102135]
We propose novel quantum metrology applications with two soliton qubit states.
Phase space analysis, in terms of population imbalance - phase difference variables, is also performed to demonstrate macroscopic quantum self-trapping regimes.
arXiv Detail & Related papers (2020-11-26T09:05:06Z) - Probing eigenstate thermalization in quantum simulators via
fluctuation-dissipation relations [77.34726150561087]
The eigenstate thermalization hypothesis (ETH) offers a universal mechanism for the approach to equilibrium of closed quantum many-body systems.
Here, we propose a theory-independent route to probe the full ETH in quantum simulators by observing the emergence of fluctuation-dissipation relations.
Our work presents a theory-independent way to characterize thermalization in quantum simulators and paves the way to quantum simulate condensed matter pump-probe experiments.
arXiv Detail & Related papers (2020-07-20T18:00:02Z) - Efficient quantum circuits for quantum computational chemistry [0.0]
Efficient ways to perform fermionic excitations are vital for the realization of the variational quantum eigensolver (VQE) on noisy intermediate-scale quantum computers.
We demonstrate circuits that perform qubit excitations, excitations that do not account for fermionic anticommutation relations.
Compared to circuits constructed with the standard use of "$CNOT$ staircases," our circuits offer a linear reduction in the number of $CNOT$ gates.
arXiv Detail & Related papers (2020-05-29T09:46:23Z) - Roadmap for quantum simulation of the fractional quantum Hall effect [0.0]
A major motivation for building a quantum computer is that it provides a tool to efficiently simulate strongly correlated quantum systems.
In this work, we present a detailed roadmap on how to simulate a two-dimensional electron gas---cooled to absolute zero and pierced by a strong magnetic field---on a quantum computer.
arXiv Detail & Related papers (2020-03-05T10:17:21Z) - Anisotropy-mediated reentrant localization [62.997667081978825]
We consider a 2d dipolar system, $d=2$, with the generalized dipole-dipole interaction $sim r-a$, and the power $a$ controlled experimentally in trapped-ion or Rydberg-atom systems.
We show that the spatially homogeneous tilt $beta$ of the dipoles giving rise to the anisotropic dipole exchange leads to the non-trivial reentrant localization beyond the locator expansion.
arXiv Detail & Related papers (2020-01-31T19:00:01Z) - Einselection from incompatible decoherence channels [62.997667081978825]
We analyze an open quantum dynamics inspired by CQED experiments with two non-commuting Lindblad operators.
We show that Fock states remain the most robust states to decoherence up to a critical coupling.
arXiv Detail & Related papers (2020-01-29T14:15:19Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.