Polarimetric SAR Image Semantic Segmentation with 3D Discrete Wavelet
Transform and Markov Random Field
- URL: http://arxiv.org/abs/2008.11014v1
- Date: Wed, 5 Aug 2020 08:28:18 GMT
- Title: Polarimetric SAR Image Semantic Segmentation with 3D Discrete Wavelet
Transform and Markov Random Field
- Authors: Haixia Bi, Lin Xu, Xiangyong Cao, Yong Xue, Zongben Xu
- Abstract summary: We present a contextual PolSAR image semantic segmentation method in this paper.
With a newly defined channelwise consistent feature set as input, the 3D-DWT technique is employed to extract discriminative multi-scale features that are robust to speckle noise.
By simultaneously utilizing 3D-DWT features and MRF priors for the first time, contextual information is fully integrated during the segmentation to ensure accurate and smooth segmentation.
- Score: 32.59900433812833
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Polarimetric synthetic aperture radar (PolSAR) image segmentation is
currently of great importance in image processing for remote sensing
applications. However, it is a challenging task due to two main reasons.
Firstly, the label information is difficult to acquire due to high annotation
costs. Secondly, the speckle effect embedded in the PolSAR imaging process
remarkably degrades the segmentation performance. To address these two issues,
we present a contextual PolSAR image semantic segmentation method in this
paper.With a newly defined channelwise consistent feature set as input, the
three-dimensional discrete wavelet transform (3D-DWT) technique is employed to
extract discriminative multi-scale features that are robust to speckle noise.
Then Markov random field (MRF) is further applied to enforce label smoothness
spatially during segmentation. By simultaneously utilizing 3D-DWT features and
MRF priors for the first time, contextual information is fully integrated
during the segmentation to ensure accurate and smooth segmentation. To
demonstrate the effectiveness of the proposed method, we conduct extensive
experiments on three real benchmark PolSAR image data sets. Experimental
results indicate that the proposed method achieves promising segmentation
accuracy and preferable spatial consistency using a minimal number of labeled
pixels.
Related papers
- Wavelet-based Bi-dimensional Aggregation Network for SAR Image Change Detection [53.842568573251214]
Experimental results on three SAR datasets demonstrate that our WBANet significantly outperforms contemporary state-of-the-art methods.
Our WBANet achieves 98.33%, 96.65%, and 96.62% of percentage of correct classification (PCC) on the respective datasets.
arXiv Detail & Related papers (2024-07-18T04:36:10Z) - Rotated Multi-Scale Interaction Network for Referring Remote Sensing Image Segmentation [63.15257949821558]
Referring Remote Sensing Image (RRSIS) is a new challenge that combines computer vision and natural language processing.
Traditional Referring Image (RIS) approaches have been impeded by the complex spatial scales and orientations found in aerial imagery.
We introduce the Rotated Multi-Scale Interaction Network (RMSIN), an innovative approach designed for the unique demands of RRSIS.
arXiv Detail & Related papers (2023-12-19T08:14:14Z) - GP-NeRF: Generalized Perception NeRF for Context-Aware 3D Scene Understanding [101.32590239809113]
Generalized Perception NeRF (GP-NeRF) is a novel pipeline that makes the widely used segmentation model and NeRF work compatibly under a unified framework.
We propose two self-distillation mechanisms, i.e., the Semantic Distill Loss and the Depth-Guided Semantic Distill Loss, to enhance the discrimination and quality of the semantic field.
arXiv Detail & Related papers (2023-11-20T15:59:41Z) - TFNet: Exploiting Temporal Cues for Fast and Accurate LiDAR Semantic Segmentation [22.827914249161875]
We present TFNet, a range-image-based LiDAR semantic segmentation method.
We incorporate a temporal fusion layer to extract useful information from previous scans and integrate it with the current scan.
We then design a max-voting-based post-processing technique to correct false predictions.
arXiv Detail & Related papers (2023-09-14T16:48:31Z) - Scene-Generalizable Interactive Segmentation of Radiance Fields [64.37093918762]
We make the first attempt at Scene-Generalizable Interactive in Radiance Fields (SGISRF)
We propose a novel SGISRF method, which can perform 3D object segmentation for novel (unseen) scenes represented by radiance fields, guided by only a few interactive user clicks in a given set of multi-view 2D images.
Experiments on two real-world challenging benchmarks covering diverse scenes demonstrate 1) effectiveness and scene-generalizability of the proposed method, 2) favorable performance compared to classical method requiring scene-specific optimization.
arXiv Detail & Related papers (2023-08-09T17:55:50Z) - SwIPE: Efficient and Robust Medical Image Segmentation with Implicit Patch Embeddings [12.79344668998054]
We propose SwIPE (Segmentation with Implicit Patch Embeddings) to enable accurate local boundary delineation and global shape coherence.
We show that SwIPE significantly improves over recent implicit approaches and outperforms state-of-the-art discrete methods with over 10x fewer parameters.
arXiv Detail & Related papers (2023-07-23T20:55:11Z) - Super-Resolution Based Patch-Free 3D Image Segmentation with
High-Frequency Guidance [20.86089285980103]
High resolution (HR) 3D images are widely used nowadays, such as medical images like Magnetic Resonance Imaging (MRI) and Computed Tomography (CT)
arXiv Detail & Related papers (2022-10-26T11:46:08Z) - Collaborative Propagation on Multiple Instance Graphs for 3D Instance
Segmentation with Single-point Supervision [63.429704654271475]
We propose a novel weakly supervised method RWSeg that only requires labeling one object with one point.
With these sparse weak labels, we introduce a unified framework with two branches to propagate semantic and instance information.
Specifically, we propose a Cross-graph Competing Random Walks (CRW) algorithm that encourages competition among different instance graphs.
arXiv Detail & Related papers (2022-08-10T02:14:39Z) - A distribution-dependent Mumford-Shah model for unsupervised
hyperspectral image segmentation [3.2116198597240846]
We present a novel unsupervised hyperspectral segmentation framework.
It starts with a denoising and dimensionality reduction step by the well-established Minimum Noise Fraction (MNF) transform.
We equipped the MS functional with a novel robust distribution-dependent indicator function designed to handle the challenges of hyperspectral data.
arXiv Detail & Related papers (2022-03-28T19:57:14Z) - Weakly-supervised Learning For Catheter Segmentation in 3D Frustum
Ultrasound [74.22397862400177]
We propose a novel Frustum ultrasound based catheter segmentation method.
The proposed method achieved the state-of-the-art performance with an efficiency of 0.25 second per volume.
arXiv Detail & Related papers (2020-10-19T13:56:22Z) - SemanticVoxels: Sequential Fusion for 3D Pedestrian Detection using
LiDAR Point Cloud and Semantic Segmentation [4.350338899049983]
We propose a generalization of PointPainting to be able to apply fusion at different levels.
We show that SemanticVoxels achieves state-of-the-art performance in both 3D and bird's eye view pedestrian detection benchmarks.
arXiv Detail & Related papers (2020-09-25T14:52:32Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.