FastSal: a Computationally Efficient Network for Visual Saliency
Prediction
- URL: http://arxiv.org/abs/2008.11151v1
- Date: Tue, 25 Aug 2020 16:32:33 GMT
- Title: FastSal: a Computationally Efficient Network for Visual Saliency
Prediction
- Authors: Feiyan Hu and Kevin McGuinness
- Abstract summary: We show that MobileNetV2 makes an excellent backbone for a visual saliency model and can be effective even without a complex decoder.
We also show that knowledge transfer from a more computationally expensive model like DeepGaze II can be achieved via pseudo-labelling an unlabelled dataset.
- Score: 7.742198347952173
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper focuses on the problem of visual saliency prediction, predicting
regions of an image that tend to attract human visual attention, under a
constrained computational budget. We modify and test various recent efficient
convolutional neural network architectures like EfficientNet and MobileNetV2
and compare them with existing state-of-the-art saliency models such as SalGAN
and DeepGaze II both in terms of standard accuracy metrics like AUC and NSS,
and in terms of the computational complexity and model size. We find that
MobileNetV2 makes an excellent backbone for a visual saliency model and can be
effective even without a complex decoder. We also show that knowledge transfer
from a more computationally expensive model like DeepGaze II can be achieved
via pseudo-labelling an unlabelled dataset, and that this approach gives result
on-par with many state-of-the-art algorithms with a fraction of the
computational cost and model size. Source code is available at
https://github.com/feiyanhu/FastSal.
Related papers
- Task-Oriented Real-time Visual Inference for IoVT Systems: A Co-design Framework of Neural Networks and Edge Deployment [61.20689382879937]
Task-oriented edge computing addresses this by shifting data analysis to the edge.
Existing methods struggle to balance high model performance with low resource consumption.
We propose a novel co-design framework to optimize neural network architecture.
arXiv Detail & Related papers (2024-10-29T19:02:54Z) - EfficientVMamba: Atrous Selective Scan for Light Weight Visual Mamba [19.062950348441426]
This work proposes to explore the potential of visual state space models in light-weight model design and introduce a novel efficient model variant dubbed EfficientVMamba.
Our EfficientVMamba integrates a atrous-based selective scan approach by efficient skip sampling, constituting building blocks designed to harness both global and local representational features.
Experimental results show that, EfficientVMamba scales down the computational complexity while yields competitive results across a variety of vision tasks.
arXiv Detail & Related papers (2024-03-15T02:48:47Z) - NAR-Former: Neural Architecture Representation Learning towards Holistic
Attributes Prediction [37.357949900603295]
We propose a neural architecture representation model that can be used to estimate attributes holistically.
Experiment results show that our proposed framework can be used to predict the latency and accuracy attributes of both cell architectures and whole deep neural networks.
arXiv Detail & Related papers (2022-11-15T10:15:21Z) - MultiScale MeshGraphNets [65.26373813797409]
We propose two complementary approaches to improve the framework from MeshGraphNets.
First, we demonstrate that it is possible to learn accurate surrogate dynamics of a high-resolution system on a much coarser mesh.
Second, we introduce a hierarchical approach (MultiScale MeshGraphNets) which passes messages on two different resolutions.
arXiv Detail & Related papers (2022-10-02T20:16:20Z) - Dynamic Graph Message Passing Networks for Visual Recognition [112.49513303433606]
Modelling long-range dependencies is critical for scene understanding tasks in computer vision.
A fully-connected graph is beneficial for such modelling, but its computational overhead is prohibitive.
We propose a dynamic graph message passing network, that significantly reduces the computational complexity.
arXiv Detail & Related papers (2022-09-20T14:41:37Z) - Large-Margin Representation Learning for Texture Classification [67.94823375350433]
This paper presents a novel approach combining convolutional layers (CLs) and large-margin metric learning for training supervised models on small datasets for texture classification.
The experimental results on texture and histopathologic image datasets have shown that the proposed approach achieves competitive accuracy with lower computational cost and faster convergence when compared to equivalent CNNs.
arXiv Detail & Related papers (2022-06-17T04:07:45Z) - Variable Bitrate Neural Fields [75.24672452527795]
We present a dictionary method for compressing feature grids, reducing their memory consumption by up to 100x.
We formulate the dictionary optimization as a vector-quantized auto-decoder problem which lets us learn end-to-end discrete neural representations in a space where no direct supervision is available.
arXiv Detail & Related papers (2022-06-15T17:58:34Z) - Toward Accurate Platform-Aware Performance Modeling for Deep Neural
Networks [0.17499351967216337]
We provide a machine learning-based method, PerfNetV2, which improves the accuracy of our previous work for modeling the neural network performance on a variety of GPU accelerators.
Given an application, the proposed method can be used to predict the inference time and training time of the convolutional neural networks used in the application.
Our case studies show that PerfNetV2 yields a mean absolute percentage error within 13.1% on LeNet, AlexNet, and VGG16 on NVIDIA GTX-1080Ti, while the error rate on a previous work published in ICBD 2018 could be as large as 200%.
arXiv Detail & Related papers (2020-12-01T01:42:23Z) - Glance and Focus: a Dynamic Approach to Reducing Spatial Redundancy in
Image Classification [46.885260723836865]
Deep convolutional neural networks (CNNs) generally improve when fueled with high resolution images.
Inspired by the fact that not all regions in an image are task-relevant, we propose a novel framework that performs efficient image classification.
Our framework is general and flexible as it is compatible with most of the state-of-the-art light-weighted CNNs.
arXiv Detail & Related papers (2020-10-11T17:55:06Z) - Computation on Sparse Neural Networks: an Inspiration for Future
Hardware [20.131626638342706]
We describe the current status of the research on the computation of sparse neural networks.
We discuss the model accuracy influenced by the number of weight parameters and the structure of the model.
We show that for practically complicated problems, it is more beneficial to search large and sparse models in the weight dominated region.
arXiv Detail & Related papers (2020-04-24T19:13:50Z) - Widening and Squeezing: Towards Accurate and Efficient QNNs [125.172220129257]
Quantization neural networks (QNNs) are very attractive to the industry because their extremely cheap calculation and storage overhead, but their performance is still worse than that of networks with full-precision parameters.
Most of existing methods aim to enhance performance of QNNs especially binary neural networks by exploiting more effective training techniques.
We address this problem by projecting features in original full-precision networks to high-dimensional quantization features.
arXiv Detail & Related papers (2020-02-03T04:11:13Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.