Surrogate Model For Field Optimization Using Beta-VAE Based Regression
- URL: http://arxiv.org/abs/2008.11433v2
- Date: Sun, 27 Feb 2022 11:29:53 GMT
- Title: Surrogate Model For Field Optimization Using Beta-VAE Based Regression
- Authors: Ajitabh Kumar
- Abstract summary: Oilfield development related decisions are made using reservoir simulation-based optimization study.
Deep learning has been used in past to generate surrogates, but such models often fail to quantify prediction uncertainty.
beta-VAE based regression is proposed to generate simulation surrogates for use in optimization workflow.
- Score: 0.0
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Oilfield development related decisions are made using reservoir
simulation-based optimization study in which different production scenarios and
well controls are compared. Such simulations are computationally expensive and
so surrogate models are used to accelerate studies. Deep learning has been used
in past to generate surrogates, but such models often fail to quantify
prediction uncertainty and are not interpretable. In this work, beta-VAE based
regression is proposed to generate simulation surrogates for use in
optimization workflow. beta-VAE enables interpretable, factorized
representation of decision variables in latent space, which is then further
used for regression. Probabilistic dense layers are used to quantify prediction
uncertainty and enable approximate Bayesian inference. Surrogate model
developed using beta-VAE based regression finds interpretable and relevant
latent representation. A reasonable value of beta ensures a good balance
between factor disentanglement and reconstruction. Probabilistic dense layer
helps in quantifying predicted uncertainty for objective function, which is
then used to decide whether full-physics simulation is required for a case.
Related papers
- Embedded Nonlocal Operator Regression (ENOR): Quantifying model error in learning nonlocal operators [8.585650361148558]
We propose a new framework to learn a nonlocal homogenized surrogate model and its structural model error.
This framework provides discrepancy-adaptive uncertainty quantification for homogenized material response predictions in long-term simulations.
arXiv Detail & Related papers (2024-10-27T04:17:27Z) - Diffusion posterior sampling for simulation-based inference in tall data settings [53.17563688225137]
Simulation-based inference ( SBI) is capable of approximating the posterior distribution that relates input parameters to a given observation.
In this work, we consider a tall data extension in which multiple observations are available to better infer the parameters of the model.
We compare our method to recently proposed competing approaches on various numerical experiments and demonstrate its superiority in terms of numerical stability and computational cost.
arXiv Detail & Related papers (2024-04-11T09:23:36Z) - Conformal Approach To Gaussian Process Surrogate Evaluation With
Coverage Guarantees [47.22930583160043]
We propose a method for building adaptive cross-conformal prediction intervals.
The resulting conformal prediction intervals exhibit a level of adaptivity akin to Bayesian credibility sets.
The potential applicability of the method is demonstrated in the context of surrogate modeling of an expensive-to-evaluate simulator of the clogging phenomenon in steam generators of nuclear reactors.
arXiv Detail & Related papers (2024-01-15T14:45:18Z) - Enhancing Polynomial Chaos Expansion Based Surrogate Modeling using a
Novel Probabilistic Transfer Learning Strategy [2.980666177064344]
In black-box simulations, non-intrusive PCE allows the construction of surrogates using a set of simulation response evaluations.
We propose to leverage transfer learning whereby knowledge gained through similar PCE surrogate construction tasks is transferred to a new surrogate-construction task.
arXiv Detail & Related papers (2023-12-07T19:16:42Z) - Calibrating Neural Simulation-Based Inference with Differentiable
Coverage Probability [50.44439018155837]
We propose to include a calibration term directly into the training objective of the neural model.
By introducing a relaxation of the classical formulation of calibration error we enable end-to-end backpropagation.
It is directly applicable to existing computational pipelines allowing reliable black-box posterior inference.
arXiv Detail & Related papers (2023-10-20T10:20:45Z) - Bayesian Sparse Regression for Mixed Multi-Responses with Application to
Runtime Metrics Prediction in Fog Manufacturing [6.288767115532775]
Fog manufacturing can greatly enhance traditional manufacturing systems through distributed computation Fog units.
It is known that the predictive offloading methods highly depend on accurate prediction and uncertainty quantification of runtime performance metrics.
We propose a Bayesian sparse regression for multivariate mixed responses to enhance the prediction of runtime performance metrics.
arXiv Detail & Related papers (2022-10-10T16:14:08Z) - Sparse high-dimensional linear regression with a partitioned empirical
Bayes ECM algorithm [62.997667081978825]
We propose a computationally efficient and powerful Bayesian approach for sparse high-dimensional linear regression.
Minimal prior assumptions on the parameters are used through the use of plug-in empirical Bayes estimates.
The proposed approach is implemented in the R package probe.
arXiv Detail & Related papers (2022-09-16T19:15:50Z) - Neural Posterior Estimation with Differentiable Simulators [58.720142291102135]
We present a new method to perform Neural Posterior Estimation (NPE) with a differentiable simulator.
We demonstrate how gradient information helps constrain the shape of the posterior and improves sample-efficiency.
arXiv Detail & Related papers (2022-07-12T16:08:04Z) - Variational Inference with NoFAS: Normalizing Flow with Adaptive
Surrogate for Computationally Expensive Models [7.217783736464403]
Use of sampling-based approaches such as Markov chain Monte Carlo may become intractable when each likelihood evaluation is computationally expensive.
New approaches combining variational inference with normalizing flow are characterized by a computational cost that grows only linearly with the dimensionality of the latent variable space.
We propose Normalizing Flow with Adaptive Surrogate (NoFAS), an optimization strategy that alternatively updates the normalizing flow parameters and the weights of a neural network surrogate model.
arXiv Detail & Related papers (2021-08-28T14:31:45Z) - Decision-Making with Auto-Encoding Variational Bayes [71.44735417472043]
We show that a posterior approximation distinct from the variational distribution should be used for making decisions.
Motivated by these theoretical results, we propose learning several approximate proposals for the best model.
In addition to toy examples, we present a full-fledged case study of single-cell RNA sequencing.
arXiv Detail & Related papers (2020-02-17T19:23:36Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.