Analysis and Evaluation of Language Models for Word Sense Disambiguation
- URL: http://arxiv.org/abs/2008.11608v3
- Date: Wed, 17 Mar 2021 19:16:39 GMT
- Title: Analysis and Evaluation of Language Models for Word Sense Disambiguation
- Authors: Daniel Loureiro, Kiamehr Rezaee, Mohammad Taher Pilehvar, Jose
Camacho-Collados
- Abstract summary: Transformer-based language models have taken many fields in NLP by storm.
BERT can accurately capture high-level sense distinctions, even when a limited number of examples is available for each word sense.
BERT and its derivatives dominate most of the existing evaluation benchmarks.
- Score: 18.001457030065712
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Transformer-based language models have taken many fields in NLP by storm.
BERT and its derivatives dominate most of the existing evaluation benchmarks,
including those for Word Sense Disambiguation (WSD), thanks to their ability in
capturing context-sensitive semantic nuances. However, there is still little
knowledge about their capabilities and potential limitations in encoding and
recovering word senses. In this article, we provide an in-depth quantitative
and qualitative analysis of the celebrated BERT model with respect to lexical
ambiguity. One of the main conclusions of our analysis is that BERT can
accurately capture high-level sense distinctions, even when a limited number of
examples is available for each word sense. Our analysis also reveals that in
some cases language models come close to solving coarse-grained noun
disambiguation under ideal conditions in terms of availability of training data
and computing resources. However, this scenario rarely occurs in real-world
settings and, hence, many practical challenges remain even in the
coarse-grained setting. We also perform an in-depth comparison of the two main
language model based WSD strategies, i.e., fine-tuning and feature extraction,
finding that the latter approach is more robust with respect to sense bias and
it can better exploit limited available training data. In fact, the simple
feature extraction strategy of averaging contextualized embeddings proves
robust even using only three training sentences per word sense, with minimal
improvements obtained by increasing the size of this training data.
Related papers
- Beyond Coarse-Grained Matching in Video-Text Retrieval [50.799697216533914]
We introduce a new approach for fine-grained evaluation.
Our approach can be applied to existing datasets by automatically generating hard negative test captions.
Experiments on our fine-grained evaluations demonstrate that this approach enhances a model's ability to understand fine-grained differences.
arXiv Detail & Related papers (2024-10-16T09:42:29Z) - On Robustness of Prompt-based Semantic Parsing with Large Pre-trained
Language Model: An Empirical Study on Codex [48.588772371355816]
This paper presents the first empirical study on the adversarial robustness of a large prompt-based language model of code, codex.
Our results demonstrate that the state-of-the-art (SOTA) code-language models are vulnerable to carefully crafted adversarial examples.
arXiv Detail & Related papers (2023-01-30T13:21:00Z) - A Unified Neural Network Model for Readability Assessment with Feature
Projection and Length-Balanced Loss [17.213602354715956]
We propose a BERT-based model with feature projection and length-balanced loss for readability assessment.
Our model achieves state-of-the-art performances on two English benchmark datasets and one dataset of Chinese textbooks.
arXiv Detail & Related papers (2022-10-19T05:33:27Z) - Entity Disambiguation with Entity Definitions [50.01142092276296]
Local models have recently attained astounding performances in Entity Disambiguation (ED)
Previous works limited their studies to using, as the textual representation of each candidate, only its Wikipedia title.
In this paper, we address this limitation and investigate to what extent more expressive textual representations can mitigate it.
We report a new state of the art on 2 out of 6 benchmarks we consider and strongly improve the generalization capability over unseen patterns.
arXiv Detail & Related papers (2022-10-11T17:46:28Z) - A Latent-Variable Model for Intrinsic Probing [93.62808331764072]
We propose a novel latent-variable formulation for constructing intrinsic probes.
We find empirical evidence that pre-trained representations develop a cross-lingually entangled notion of morphosyntax.
arXiv Detail & Related papers (2022-01-20T15:01:12Z) - Few-shot Named Entity Recognition with Cloze Questions [3.561183926088611]
We propose a simple and intuitive adaptation of Pattern-Exploiting Training (PET), a recent approach which combines the cloze-questions mechanism and fine-tuning for few-shot learning.
Our approach achieves considerably better performance than standard fine-tuning and comparable or improved results with respect to other few-shot baselines.
arXiv Detail & Related papers (2021-11-24T11:08:59Z) - Obtaining Better Static Word Embeddings Using Contextual Embedding
Models [53.86080627007695]
Our proposed distillation method is a simple extension of CBOW-based training.
As a side-effect, our approach also allows a fair comparison of both contextual and static embeddings.
arXiv Detail & Related papers (2021-06-08T12:59:32Z) - Training Bi-Encoders for Word Sense Disambiguation [4.149972584899897]
State-of-the-art approaches in Word Sense Disambiguation leverage lexical information along with pre-trained embeddings from these models to achieve results comparable to human inter-annotator agreement on standard evaluation benchmarks.
We further the state of the art in Word Sense Disambiguation through our multi-stage pre-training and fine-tuning pipeline.
arXiv Detail & Related papers (2021-05-21T06:06:03Z) - Syntactic Structure Distillation Pretraining For Bidirectional Encoders [49.483357228441434]
We introduce a knowledge distillation strategy for injecting syntactic biases into BERT pretraining.
We distill the approximate marginal distribution over words in context from the syntactic LM.
Our findings demonstrate the benefits of syntactic biases, even in representation learners that exploit large amounts of data.
arXiv Detail & Related papers (2020-05-27T16:44:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.