Random Style Transfer based Domain Generalization Networks Integrating
Shape and Spatial Information
- URL: http://arxiv.org/abs/2008.12205v2
- Date: Thu, 3 Sep 2020 11:18:42 GMT
- Title: Random Style Transfer based Domain Generalization Networks Integrating
Shape and Spatial Information
- Authors: Lei Li, Veronika A. Zimmer, Wangbin Ding, Fuping Wu, Liqin Huang,
Julia A. Schnabel, Xiahai Zhuang
- Abstract summary: We present a random style transfer network to tackle the domain generalization problem for multi-vendor and center cardiac image segmentation.
As the target domain could be unknown, we randomly generate a modality vector for the target modality in the style transfer stage.
The framework incorporates the spatial information and shape prior to the target by introducing two regularization terms.
- Score: 22.32551943879256
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep learning (DL)-based models have demonstrated good performance in medical
image segmentation. However, the models trained on a known dataset often fail
when performed on an unseen dataset collected from different centers, vendors
and disease populations. In this work, we present a random style transfer
network to tackle the domain generalization problem for multi-vendor and center
cardiac image segmentation. Style transfer is used to generate training data
with a wider distribution/ heterogeneity, namely domain augmentation. As the
target domain could be unknown, we randomly generate a modality vector for the
target modality in the style transfer stage, to simulate the domain shift for
unknown domains. The model can be trained in a semi-supervised manner by
simultaneously optimizing a supervised segmentation and an unsupervised style
translation objective. Besides, the framework incorporates the spatial
information and shape prior of the target by introducing two regularization
terms. We evaluated the proposed framework on 40 subjects from the M\&Ms
challenge2020, and obtained promising performance in the segmentation for data
from unknown vendors and centers.
Related papers
- Multisource Collaborative Domain Generalization for Cross-Scene Remote Sensing Image Classification [57.945437355714155]
Cross-scene image classification aims to transfer prior knowledge of ground materials to annotate regions with different distributions.
Existing approaches focus on single-source domain generalization to unseen target domains.
We propose a novel multi-source collaborative domain generalization framework (MS-CDG) based on homogeneity and heterogeneity characteristics of multi-source remote sensing data.
arXiv Detail & Related papers (2024-12-05T06:15:08Z) - Complex Style Image Transformations for Domain Generalization in Medical Images [6.635679521775917]
Domain generalization techniques aim to approach unknown domains from a single data source.
In this paper we introduce a novel framework, named CompStyle, which leverages style transfer and adversarial training.
We provide results from experiments on semantic segmentation on prostate data and corruption robustness on cardiac data.
arXiv Detail & Related papers (2024-06-01T04:57:31Z) - Phrase Grounding-based Style Transfer for Single-Domain Generalized
Object Detection [109.58348694132091]
Single-domain generalized object detection aims to enhance a model's generalizability to multiple unseen target domains.
This is a practical yet challenging task as it requires the model to address domain shift without incorporating target domain data into training.
We propose a novel phrase grounding-based style transfer approach for the task.
arXiv Detail & Related papers (2024-02-02T10:48:43Z) - Generalized One-shot Domain Adaption of Generative Adversarial Networks [72.84435077616135]
The adaption of Generative Adversarial Network (GAN) aims to transfer a pre-trained GAN to a given domain with limited training data.
We consider that the adaptation from source domain to target domain can be decoupled into two parts: the transfer of global style like texture and color, and the emergence of new entities that do not belong to the source domain.
Our core objective is to constrain the gap between the internal distributions of the reference and syntheses by sliced Wasserstein distance.
arXiv Detail & Related papers (2022-09-08T09:24:44Z) - Unsupervised Domain Adaptation for Cross-Modality Retinal Vessel
Segmentation via Disentangling Representation Style Transfer and
Collaborative Consistency Learning [3.9562534927482704]
We propose DCDA, a novel cross-modality unsupervised domain adaptation framework for tasks with large domain shifts.
Our framework achieves Dice scores close to target-trained oracle both from OCTA to OCT and from OCT to OCTA, significantly outperforming other state-of-the-art methods.
arXiv Detail & Related papers (2022-01-13T07:03:16Z) - Stagewise Unsupervised Domain Adaptation with Adversarial Self-Training
for Road Segmentation of Remote Sensing Images [93.50240389540252]
Road segmentation from remote sensing images is a challenging task with wide ranges of application potentials.
We propose a novel stagewise domain adaptation model called RoadDA to address the domain shift (DS) issue in this field.
Experiment results on two benchmarks demonstrate that RoadDA can efficiently reduce the domain gap and outperforms state-of-the-art methods.
arXiv Detail & Related papers (2021-08-28T09:29:14Z) - Semi-supervised Meta-learning with Disentanglement for
Domain-generalised Medical Image Segmentation [15.351113774542839]
Generalising models to new data from new centres (termed here domains) remains a challenge.
We propose a novel semi-supervised meta-learning framework with disentanglement.
We show that the proposed method is robust on different segmentation tasks and achieves state-of-the-art generalisation performance on two public benchmarks.
arXiv Detail & Related papers (2021-06-24T19:50:07Z) - Source-Free Open Compound Domain Adaptation in Semantic Segmentation [99.82890571842603]
In SF-OCDA, only the source pre-trained model and the target data are available to learn the target model.
We propose the Cross-Patch Style Swap (CPSS) to diversify samples with various patch styles in the feature-level.
Our method produces state-of-the-art results on the C-Driving dataset.
arXiv Detail & Related papers (2021-06-07T08:38:41Z) - TraND: Transferable Neighborhood Discovery for Unsupervised Cross-domain
Gait Recognition [77.77786072373942]
This paper proposes a Transferable Neighborhood Discovery (TraND) framework to bridge the domain gap for unsupervised cross-domain gait recognition.
We design an end-to-end trainable approach to automatically discover the confident neighborhoods of unlabeled samples in the latent space.
Our method achieves state-of-the-art results on two public datasets, i.e., CASIA-B and OU-LP.
arXiv Detail & Related papers (2021-02-09T03:07:07Z) - Shape-aware Meta-learning for Generalizing Prostate MRI Segmentation to
Unseen Domains [68.73614619875814]
We present a novel shape-aware meta-learning scheme to improve the model generalization in prostate MRI segmentation.
Experimental results show that our approach outperforms many state-of-the-art generalization methods consistently across all six settings of unseen domains.
arXiv Detail & Related papers (2020-07-04T07:56:02Z) - Unsupervised Domain Adaptation with Multiple Domain Discriminators and
Adaptive Self-Training [22.366638308792734]
Unsupervised Domain Adaptation (UDA) aims at improving the generalization capability of a model trained on a source domain to perform well on a target domain for which no labeled data is available.
We propose an approach to adapt a deep neural network trained on synthetic data to real scenes addressing the domain shift between the two different data distributions.
arXiv Detail & Related papers (2020-04-27T11:48:03Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.