The Adapter-Bot: All-In-One Controllable Conversational Model
- URL: http://arxiv.org/abs/2008.12579v2
- Date: Wed, 21 Oct 2020 02:44:30 GMT
- Title: The Adapter-Bot: All-In-One Controllable Conversational Model
- Authors: Andrea Madotto, Zhaojiang Lin, Yejin Bang, Pascale Fung
- Abstract summary: We propose a dialogue model that uses a fixed backbone model such as DialGPT and triggers on-demand dialogue skills via different adapters.
Depending on the skills, the model is able to process multiple knowledge types, such as text, tables, and emphatic responses.
We evaluate our model using automatic evaluation by comparing it with existing state-of-the-art conversational models.
- Score: 66.48164003532484
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Considerable progress has been made towards conversational models that
generate coherent and fluent responses by training large language models on
large dialogue datasets. These models have little or no control of the
generated responses and miss two important features: continuous dialogue skills
integration and seamlessly leveraging diverse knowledge sources. In this paper,
we propose the Adapter-Bot, a dialogue model that uses a fixed backbone
conversational model such as DialGPT (Zhang et al., 2019) and triggers
on-demand dialogue skills (e.g., emphatic response, weather information, movie
recommendation) via different adapters (Houlsby et al., 2019). Each adapter can
be trained independently, thus allowing a continual integration of skills
without retraining the entire model. Depending on the skills, the model is able
to process multiple knowledge types, such as text, tables, and graphs, in a
seamless manner. The dialogue skills can be triggered automatically via a
dialogue manager, or manually, thus allowing high-level control of the
generated responses. At the current stage, we have implemented 12 response
styles (e.g., positive, negative etc.), 8 goal-oriented skills (e.g. weather
information, movie recommendation, etc.), and personalized and emphatic
responses. We evaluate our model using automatic evaluation by comparing it
with existing state-of-the-art conversational models, and we have released an
interactive system at adapter.bot.ust.hk.
Related papers
- WavChat: A Survey of Spoken Dialogue Models [66.82775211793547]
Recent advancements in spoken dialogue models, exemplified by systems like GPT-4o, have captured significant attention in the speech domain.
These advanced spoken dialogue models not only comprehend audio, music, and other speech-related features, but also capture stylistic and timbral characteristics in speech.
Despite the progress in spoken dialogue systems, there is a lack of comprehensive surveys that systematically organize and analyze these systems.
arXiv Detail & Related papers (2024-11-15T04:16:45Z) - q2d: Turning Questions into Dialogs to Teach Models How to Search [11.421839177607147]
We propose q2d: an automatic data generation pipeline that generates information-seeking dialogs from questions.
Unlike previous approaches which relied on human written dialogs with search queries, our method allows to automatically generate query-based grounded dialogs with better control and scale.
arXiv Detail & Related papers (2023-04-27T16:39:15Z) - ChatPLUG: Open-Domain Generative Dialogue System with Internet-Augmented
Instruction Tuning for Digital Human [76.62897301298699]
ChatPLUG is a Chinese open-domain dialogue system for digital human applications that instruction finetunes on a wide range of dialogue tasks in a unified internet-augmented format.
We show that modelname outperforms state-of-the-art Chinese dialogue systems on both automatic and human evaluation.
We deploy modelname to real-world applications such as Smart Speaker and Instant Message applications with fast inference.
arXiv Detail & Related papers (2023-04-16T18:16:35Z) - Few-Shot Bot: Prompt-Based Learning for Dialogue Systems [58.27337673451943]
Learning to converse using only a few examples is a great challenge in conversational AI.
The current best conversational models are either good chit-chatters (e.g., BlenderBot) or goal-oriented systems (e.g., MinTL)
We propose prompt-based few-shot learning which does not require gradient-based fine-tuning but instead uses a few examples as the only source of learning.
arXiv Detail & Related papers (2021-10-15T14:36:45Z) - CloneBot: Personalized Dialogue-Response Predictions [0.0]
The project task was to create a model that, given a speaker ID, chat history, and an utterance query, can predict the response utterance in a conversation.
The model is personalized for each speaker. This task can be a useful tool for building speech bots that talk in a human-like manner in a live conversation.
arXiv Detail & Related papers (2021-03-31T01:15:37Z) - A Taxonomy of Empathetic Response Intents in Human Social Conversations [1.52292571922932]
Open-domain conversational agents are becoming increasingly popular in the natural language processing community.
One of the challenges is enabling them to converse in an empathetic manner.
Current neural response generation methods rely solely on end-to-end learning from large scale conversation data to generate dialogues.
Recent work has shown the promise of combining dialogue act/intent modelling and neural response generation.
arXiv Detail & Related papers (2020-12-07T21:56:45Z) - Speaker Sensitive Response Evaluation Model [17.381658875470638]
We propose an automatic evaluation model based on the similarity of the generated response with the conversational context.
We learn the model parameters from an unlabeled conversation corpus.
We show that our model can be applied to movie dialogues without any additional training.
arXiv Detail & Related papers (2020-06-12T08:59:10Z) - Knowledge Injection into Dialogue Generation via Language Models [85.65843021510521]
InjK is a two-stage approach to inject knowledge into a dialogue generation model.
First, we train a large-scale language model and query it as textual knowledge.
Second, we frame a dialogue generation model to sequentially generate textual knowledge and a corresponding response.
arXiv Detail & Related papers (2020-04-30T07:31:24Z) - Modality-Balanced Models for Visual Dialogue [102.35406085738325]
The Visual Dialog task requires a model to exploit both image and conversational context information to generate the next response to the dialogue.
We show that previous joint-modality (history and image) models over-rely on and are more prone to memorizing the dialogue history.
We present methods for this integration of the two models, via ensemble and consensus dropout fusion with shared parameters.
arXiv Detail & Related papers (2020-01-17T14:57:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.