Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks
- URL: http://arxiv.org/abs/2008.12767v1
- Date: Fri, 28 Aug 2020 17:47:11 GMT
- Title: Dynamic Graph Neural Network for Traffic Forecasting in Wide Area
Networks
- Authors: Tanwi Mallick, Mariam Kiran, Bashir Mohammed, Prasanna Balaprakash
- Abstract summary: We develop a nonautore graph-based neural network for multistep network traffic forecasting.
We evaluate the efficacy of our approach on real traffic from ESnet, the U.S. Department of Energy's dedicated science network.
- Score: 1.0934800950965335
- License: http://creativecommons.org/licenses/by/4.0/
- Abstract: Wide area networking infrastructures (WANs), particularly science and
research WANs, are the backbone for moving large volumes of scientific data
between experimental facilities and data centers. With demands growing at
exponential rates, these networks are struggling to cope with large data
volumes, real-time responses, and overall network performance. Network
operators are increasingly looking for innovative ways to manage the limited
underlying network resources. Forecasting network traffic is a critical
capability for proactive resource management, congestion mitigation, and
dedicated transfer provisioning. To this end, we propose a nonautoregressive
graph-based neural network for multistep network traffic forecasting.
Specifically, we develop a dynamic variant of diffusion convolutional recurrent
neural networks to forecast traffic in research WANs. We evaluate the efficacy
of our approach on real traffic from ESnet, the U.S. Department of Energy's
dedicated science network. Our results show that compared to classical
forecasting methods, our approach explicitly learns the dynamic nature of
spatiotemporal traffic patterns, showing significant improvements in
forecasting accuracy. Our technique can surpass existing statistical and deep
learning approaches by achieving approximately 20% mean absolute percentage
error for multiple hours of forecasts despite dynamic network traffic settings.
Related papers
- TDNetGen: Empowering Complex Network Resilience Prediction with Generative Augmentation of Topology and Dynamics [14.25304439234864]
We introduce a novel resilience prediction framework for complex networks, designed to tackle this issue through generative data augmentation of network topology and dynamics.
Experiment results on three network datasets demonstrate that our proposed framework TDNetGen can achieve high prediction accuracy up to 85%-95%.
arXiv Detail & Related papers (2024-08-19T09:20:31Z) - FLEXIBLE: Forecasting Cellular Traffic by Leveraging Explicit Inductive Graph-Based Learning [1.4216957119562985]
We introduce a novel inductive learning scheme and a generalizable GNN-based forecasting model that can process diverse graphs of cellular traffic with one-time training.
Experimental results show up to 9.8% performance improvement compared to the state-of-the-art.
arXiv Detail & Related papers (2024-05-14T07:53:23Z) - Cellular Traffic Prediction Using Online Prediction Algorithms [5.416701003120508]
This paper investigates the efficacy of live prediction algorithms for forecasting cellular network traffic in real-time scenarios.
We apply two live prediction algorithms on machine learning models, one of which is recently proposed Fast LiveStream Prediction (FLSP) algorithm.
Our study reveals that the FLSP algorithm can halve the required bandwidth for asynchronous data reporting compared to conventional online prediction algorithms.
arXiv Detail & Related papers (2024-05-08T17:36:14Z) - Energy-Guided Data Sampling for Traffic Prediction with Mini Training Datasets [13.065729535009925]
We propose an innovative solution that merges Convolutional Neural Networks (CNNs) with Long Short-Term Memory (LSTM) architecture to enhance the prediction of traffic flow dynamics.
A key revelation of our research is the feasibility of sampling training data for large traffic systems from simulations conducted on smaller traffic systems.
arXiv Detail & Related papers (2024-03-27T15:57:42Z) - Visual Prompting Upgrades Neural Network Sparsification: A Data-Model Perspective [64.04617968947697]
We introduce a novel data-model co-design perspective: to promote superior weight sparsity.
Specifically, customized Visual Prompts are mounted to upgrade neural Network sparsification in our proposed VPNs framework.
arXiv Detail & Related papers (2023-12-03T13:50:24Z) - Deep Neural Networks Tend To Extrapolate Predictably [51.303814412294514]
neural network predictions tend to be unpredictable and overconfident when faced with out-of-distribution (OOD) inputs.
We observe that neural network predictions often tend towards a constant value as input data becomes increasingly OOD.
We show how one can leverage our insights in practice to enable risk-sensitive decision-making in the presence of OOD inputs.
arXiv Detail & Related papers (2023-10-02T03:25:32Z) - Solving Large-scale Spatial Problems with Convolutional Neural Networks [88.31876586547848]
We employ transfer learning to improve training efficiency for large-scale spatial problems.
We propose that a convolutional neural network (CNN) can be trained on small windows of signals, but evaluated on arbitrarily large signals with little to no performance degradation.
arXiv Detail & Related papers (2023-06-14T01:24:42Z) - Influencer Detection with Dynamic Graph Neural Networks [56.1837101824783]
We investigate different dynamic Graph Neural Networks (GNNs) configurations for influencer detection.
We show that using deep multi-head attention in GNN and encoding temporal attributes significantly improves performance.
arXiv Detail & Related papers (2022-11-15T13:00:25Z) - Domain Adversarial Spatial-Temporal Network: A Transferable Framework
for Short-term Traffic Forecasting across Cities [9.891703123090528]
We propose a novel transferable traffic forecasting framework: Adversarial Spatial-Temporal Network (DASTNet)
DASTNet is pre-trained on multiple source networks and fine-tuned with the target network's traffic data.
It consistently outperforms all state-of-the-art baseline methods on three benchmark datasets.
arXiv Detail & Related papers (2022-02-08T03:58:39Z) - Distribution-sensitive Information Retention for Accurate Binary Neural
Network [49.971345958676196]
We present a novel Distribution-sensitive Information Retention Network (DIR-Net) to retain the information of the forward activations and backward gradients.
Our DIR-Net consistently outperforms the SOTA binarization approaches under mainstream and compact architectures.
We conduct our DIR-Net on real-world resource-limited devices which achieves 11.1 times storage saving and 5.4 times speedup.
arXiv Detail & Related papers (2021-09-25T10:59:39Z) - Semi-supervised Network Embedding with Differentiable Deep Quantisation [81.49184987430333]
We develop d-SNEQ, a differentiable quantisation method for network embedding.
d-SNEQ incorporates a rank loss to equip the learned quantisation codes with rich high-order information.
It is able to substantially compress the size of trained embeddings, thus reducing storage footprint and accelerating retrieval speed.
arXiv Detail & Related papers (2021-08-20T11:53:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.