Efficient Computation of Expectations under Spanning Tree Distributions
- URL: http://arxiv.org/abs/2008.12988v4
- Date: Thu, 25 Mar 2021 10:12:34 GMT
- Title: Efficient Computation of Expectations under Spanning Tree Distributions
- Authors: Ran Zmigrod, Tim Vieira, Ryan Cotterell
- Abstract summary: We propose unified algorithms for the important cases of first-order expectations and second-order expectations in edge-factored, non-projective spanning-tree models.
Our algorithms exploit a fundamental connection between gradients and expectations, which allows us to derive efficient algorithms.
- Score: 67.71280539312536
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We give a general framework for inference in spanning tree models. We propose
unified algorithms for the important cases of first-order expectations and
second-order expectations in edge-factored, non-projective spanning-tree
models. Our algorithms exploit a fundamental connection between gradients and
expectations, which allows us to derive efficient algorithms. These algorithms
are easy to implement with or without automatic differentiation software. We
motivate the development of our framework with several \emph{cautionary tales}
of previous research, which has developed numerous inefficient algorithms for
computing expectations and their gradients. We demonstrate how our framework
efficiently computes several quantities with known algorithms, including the
expected attachment score, entropy, and generalized expectation criteria. As a
bonus, we give algorithms for quantities that are missing in the literature,
including the KL divergence. In all cases, our approach matches the efficiency
of existing algorithms and, in several cases, reduces the runtime complexity by
a factor of the sentence length. We validate the implementation of our
framework through runtime experiments. We find our algorithms are up to 15 and
9 times faster than previous algorithms for computing the Shannon entropy and
the gradient of the generalized expectation objective, respectively.
Related papers
- Dual Algorithmic Reasoning [9.701208207491879]
We propose to learn algorithms by exploiting duality of the underlying algorithmic problem.
We demonstrate that simultaneously learning the dual definition of these optimisation problems in algorithmic learning allows for better learning.
We then validate the real-world utility of our dual algorithmic reasoner by deploying it on a challenging brain vessel classification task.
arXiv Detail & Related papers (2023-02-09T08:46:23Z) - Causal Bandits without Graph Learning [28.021500949026766]
We develop an efficient algorithm for finding the parent node of the reward node using atomic interventions.
We extend our algorithm to the case when the reward node has multiple parents.
arXiv Detail & Related papers (2023-01-26T20:27:14Z) - Non-Clairvoyant Scheduling with Predictions Revisited [77.86290991564829]
In non-clairvoyant scheduling, the task is to find an online strategy for scheduling jobs with a priori unknown processing requirements.
We revisit this well-studied problem in a recently popular learning-augmented setting that integrates (untrusted) predictions in algorithm design.
We show that these predictions have desired properties, admit a natural error measure as well as algorithms with strong performance guarantees.
arXiv Detail & Related papers (2022-02-21T13:18:11Z) - Robustification of Online Graph Exploration Methods [59.50307752165016]
We study a learning-augmented variant of the classical, notoriously hard online graph exploration problem.
We propose an algorithm that naturally integrates predictions into the well-known Nearest Neighbor (NN) algorithm.
arXiv Detail & Related papers (2021-12-10T10:02:31Z) - Practical, Provably-Correct Interactive Learning in the Realizable
Setting: The Power of True Believers [12.09273192079783]
We consider interactive learning in the realizable setting and develop a general framework to handle problems ranging from best arm identification to active classification.
We design novel computationally efficient algorithms for the realizable setting that match the minimax lower bound up to logarithmic factors.
arXiv Detail & Related papers (2021-11-09T02:33:36Z) - Provably Faster Algorithms for Bilevel Optimization [54.83583213812667]
Bilevel optimization has been widely applied in many important machine learning applications.
We propose two new algorithms for bilevel optimization.
We show that both algorithms achieve the complexity of $mathcalO(epsilon-1.5)$, which outperforms all existing algorithms by the order of magnitude.
arXiv Detail & Related papers (2021-06-08T21:05:30Z) - Benchmarking Simulation-Based Inference [5.3898004059026325]
Recent advances in probabilistic modelling have led to a large number of simulation-based inference algorithms which do not require numerical evaluation of likelihoods.
We provide a benchmark with inference tasks and suitable performance metrics, with an initial selection of algorithms.
We found that the choice of performance metric is critical, that even state-of-the-art algorithms have substantial room for improvement, and that sequential estimation improves sample efficiency.
arXiv Detail & Related papers (2021-01-12T18:31:22Z) - Towards Optimally Efficient Tree Search with Deep Learning [76.64632985696237]
This paper investigates the classical integer least-squares problem which estimates signals integer from linear models.
The problem is NP-hard and often arises in diverse applications such as signal processing, bioinformatics, communications and machine learning.
We propose a general hyper-accelerated tree search (HATS) algorithm by employing a deep neural network to estimate the optimal estimation for the underlying simplified memory-bounded A* algorithm.
arXiv Detail & Related papers (2021-01-07T08:00:02Z) - Learning to Accelerate Heuristic Searching for Large-Scale Maximum
Weighted b-Matching Problems in Online Advertising [51.97494906131859]
Bipartite b-matching is fundamental in algorithm design, and has been widely applied into economic markets, labor markets, etc.
Existing exact and approximate algorithms usually fail in such settings due to either requiring intolerable running time or too much computation resource.
We propose textttNeuSearcher which leverages the knowledge learned from previously instances to solve new problem instances.
arXiv Detail & Related papers (2020-05-09T02:48:23Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.