A Topological Framework for Deep Learning
- URL: http://arxiv.org/abs/2008.13697v13
- Date: Sun, 18 Oct 2020 19:27:24 GMT
- Title: A Topological Framework for Deep Learning
- Authors: Mustafa Hajij, Kyle Istvan
- Abstract summary: We show that the classification problem in machine learning is always solvable under very mild conditions.
In particular, we show that a softmax classification network acts on an input topological space by a finite sequence of topological moves to achieve the classification task.
- Score: 0.7310043452300736
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We utilize classical facts from topology to show that the classification
problem in machine learning is always solvable under very mild conditions.
Furthermore, we show that a softmax classification network acts on an input
topological space by a finite sequence of topological moves to achieve the
classification task. Moreover, given a training dataset, we show how
topological formalism can be used to suggest the appropriate architectural
choices for neural networks designed to be trained as classifiers on the data.
Finally, we show how the architecture of a neural network cannot be chosen
independently from the shape of the underlying data. To demonstrate these
results, we provide example datasets and show how they are acted upon by neural
nets from this topological perspective.
Related papers
- Coding schemes in neural networks learning classification tasks [52.22978725954347]
We investigate fully-connected, wide neural networks learning classification tasks.
We show that the networks acquire strong, data-dependent features.
Surprisingly, the nature of the internal representations depends crucially on the neuronal nonlinearity.
arXiv Detail & Related papers (2024-06-24T14:50:05Z) - Homological Convolutional Neural Networks [4.615338063719135]
We propose a novel deep learning architecture that exploits the data structural organization through topologically constrained network representations.
We test our model on 18 benchmark datasets against 5 classic machine learning and 3 deep learning models.
arXiv Detail & Related papers (2023-08-26T08:48:51Z) - Rethinking Persistent Homology for Visual Recognition [27.625893409863295]
This paper performs a detailed analysis of the effectiveness of topological properties for image classification in various training scenarios.
We identify the scenarios that benefit the most from topological features, e.g., training simple networks on small datasets.
arXiv Detail & Related papers (2022-07-09T08:01:11Z) - Do We Really Need a Learnable Classifier at the End of Deep Neural
Network? [118.18554882199676]
We study the potential of learning a neural network for classification with the classifier randomly as an ETF and fixed during training.
Our experimental results show that our method is able to achieve similar performances on image classification for balanced datasets.
arXiv Detail & Related papers (2022-03-17T04:34:28Z) - Data-driven emergence of convolutional structure in neural networks [83.4920717252233]
We show how fully-connected neural networks solving a discrimination task can learn a convolutional structure directly from their inputs.
By carefully designing data models, we show that the emergence of this pattern is triggered by the non-Gaussian, higher-order local structure of the inputs.
arXiv Detail & Related papers (2022-02-01T17:11:13Z) - Dive into Layers: Neural Network Capacity Bounding using Algebraic
Geometry [55.57953219617467]
We show that the learnability of a neural network is directly related to its size.
We use Betti numbers to measure the topological geometric complexity of input data and the neural network.
We perform the experiments on a real-world dataset MNIST and the results verify our analysis and conclusion.
arXiv Detail & Related papers (2021-09-03T11:45:51Z) - FF-NSL: Feed-Forward Neural-Symbolic Learner [70.978007919101]
This paper introduces a neural-symbolic learning framework, called Feed-Forward Neural-Symbolic Learner (FF-NSL)
FF-NSL integrates state-of-the-art ILP systems based on the Answer Set semantics, with neural networks, in order to learn interpretable hypotheses from labelled unstructured data.
arXiv Detail & Related papers (2021-06-24T15:38:34Z) - Neural networks adapting to datasets: learning network size and topology [77.34726150561087]
We introduce a flexible setup allowing for a neural network to learn both its size and topology during the course of a gradient-based training.
The resulting network has the structure of a graph tailored to the particular learning task and dataset.
arXiv Detail & Related papers (2020-06-22T12:46:44Z) - An analytic theory of shallow networks dynamics for hinge loss
classification [14.323962459195771]
We study the training dynamics of a simple type of neural network: a single hidden layer trained to perform a classification task.
We specialize our theory to the prototypical case of a linearly separable dataset and a linear hinge loss.
This allow us to address in a simple setting several phenomena appearing in modern networks such as slowing down of training dynamics, crossover between rich and lazy learning, and overfitting.
arXiv Detail & Related papers (2020-06-19T16:25:29Z) - Fuzzy c-Means Clustering for Persistence Diagrams [42.1666496315913]
We extend the ubiquitous Fuzzy c-Means (FCM) clustering algorithm to the space of persistence diagrams.
We show that our algorithm captures the topological structure of data without the topological prior knowledge.
In materials science, we classify transformed lattice structure datasets for the first time.
arXiv Detail & Related papers (2020-06-04T11:45:20Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.