Mapping Researchers with PeopleMap
- URL: http://arxiv.org/abs/2009.00091v1
- Date: Mon, 31 Aug 2020 20:46:27 GMT
- Title: Mapping Researchers with PeopleMap
- Authors: Jon Saad-Falcon, Omar Shaikh, Zijie J. Wang, Austin P. Wright, Sasha
Richardson, and Duen Horng Chau
- Abstract summary: PeopleMap creates visual maps for researchers based on their research interests and publications.
Requiring only the researchers' Google Scholar profiles as input, PeopleMap generates and visualizes embeddings for the researchers.
PeopleMap has received positive feedback and enthusiasm for expanding its adoption across Georgia Tech.
- Score: 11.466062262579495
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Discovering research expertise at universities can be a difficult task.
Directories routinely become outdated, and few help in visually summarizing
researchers' work or supporting the exploration of shared interests among
researchers. This results in lost opportunities for both internal and external
entities to discover new connections, nurture research collaboration, and
explore the diversity of research. To address this problem, at Georgia Tech, we
have been developing PeopleMap, an open-source interactive web-based tool that
uses natural language processing (NLP) to create visual maps for researchers
based on their research interests and publications. Requiring only the
researchers' Google Scholar profiles as input, PeopleMap generates and
visualizes embeddings for the researchers, significantly reducing the need for
manual curation of publication information. To encourage and facilitate easy
adoption and extension of PeopleMap, we have open-sourced it under the
permissive MIT license at https://github.com/poloclub/people-map. PeopleMap has
received positive feedback and enthusiasm for expanding its adoption across
Georgia Tech.
Related papers
- SurveyAgent: A Conversational System for Personalized and Efficient Research Survey [50.04283471107001]
This paper introduces SurveyAgent, a novel conversational system designed to provide personalized and efficient research survey assistance to researchers.
SurveyAgent integrates three key modules: Knowledge Management for organizing papers, Recommendation for discovering relevant literature, and Query Answering for engaging with content on a deeper level.
Our evaluation demonstrates SurveyAgent's effectiveness in streamlining research activities, showcasing its capability to facilitate how researchers interact with scientific literature.
arXiv Detail & Related papers (2024-04-09T15:01:51Z) - GAIA Search: Hugging Face and Pyserini Interoperability for NLP Training
Data Exploration [97.68234051078997]
We discuss how Pyserini can be integrated with the Hugging Face ecosystem of open-source AI libraries and artifacts.
We include a Jupyter Notebook-based walk through the core interoperability features, available on GitHub.
We present GAIA Search - a search engine built following previously laid out principles, giving access to four popular large-scale text collections.
arXiv Detail & Related papers (2023-06-02T12:09:59Z) - The Semantic Reader Project: Augmenting Scholarly Documents through
AI-Powered Interactive Reading Interfaces [54.2590226904332]
We describe the Semantic Reader Project, a effort across multiple institutions to explore automatic creation of dynamic reading interfaces for research papers.
Ten prototype interfaces have been developed and more than 300 participants and real-world users have shown improved reading experiences.
We structure this paper around challenges scholars and the public face when reading research papers.
arXiv Detail & Related papers (2023-03-25T02:47:09Z) - Spacerini: Plug-and-play Search Engines with Pyserini and Hugging Face [104.2943594704532]
Spacerini is a tool that integrates the Pyserini toolkit for reproducible information retrieval research with Hugging Face.
Spacerini makes state-of-the-art sparse and dense retrieval models more accessible to non-IR practitioners.
arXiv Detail & Related papers (2023-02-28T12:44:10Z) - ARDIAS: AI-Enhanced Research Management, Discovery, and Advisory System [24.42822218256954]
ARDIAS is a web-based application that aims to provide researchers with a full suite of discovery and collaboration tools.
ARDIAS currently allows searching for authors and articles by name and gaining insights into the research topics of a particular researcher.
With the aid of AI-based tools, ARDIAS aims to recommend potential collaborators and topics to researchers.
arXiv Detail & Related papers (2023-01-25T13:30:10Z) - Researching Alignment Research: Unsupervised Analysis [14.699455652461726]
AI alignment research is dedicated to ensuring that artificial intelligence (AI) benefits humans.
In this project, we collected and analyzed existing AI alignment research.
We found that the field is growing quickly, with several subfields emerging in parallel.
arXiv Detail & Related papers (2022-06-06T18:24:17Z) - DeepShovel: An Online Collaborative Platform for Data Extraction in
Geoscience Literature with AI Assistance [48.55345030503826]
Geoscientists need to read a huge amount of literature to locate, extract, and aggregate relevant results and data.
DeepShovel is a publicly-available AI-assisted data extraction system to support their needs.
A follow-up user evaluation with 14 researchers suggested DeepShovel improved users' efficiency of data extraction for building scientific databases.
arXiv Detail & Related papers (2022-02-21T12:18:08Z) - Bridger: Toward Bursting Scientific Filter Bubbles and Boosting
Innovation via Novel Author Discovery [22.839876884227536]
Bridger is a system for facilitating discovery of scholars and their work.
We construct a faceted representation of authors using information extracted from their papers and inferred personas.
We develop an approach that locates commonalities and contrasts between scientists.
arXiv Detail & Related papers (2021-08-12T11:24:23Z) - PeopleMap: Visualization Tool for Mapping Out Researchers using Natural
Language Processing [12.149620981671609]
PeopleMap provides a new engaging way for institutions to summarize their research talents and for people to discover new connections.
PeopleMap can be readily adopted by any institution using its publicly-accessible repository and detailed documentation.
arXiv Detail & Related papers (2020-06-10T23:06:25Z) - Rapidly Deploying a Neural Search Engine for the COVID-19 Open Research
Dataset: Preliminary Thoughts and Lessons Learned [88.42878484408469]
We present the Neural Covidex, a search engine that exploits the latest neural ranking architectures.
This paper describes our initial efforts and offers a few thoughts about lessons we have learned along the way.
arXiv Detail & Related papers (2020-04-10T17:12:29Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.