Temporal Continuity Based Unsupervised Learning for Person
Re-Identification
- URL: http://arxiv.org/abs/2009.00242v1
- Date: Tue, 1 Sep 2020 05:29:30 GMT
- Title: Temporal Continuity Based Unsupervised Learning for Person
Re-Identification
- Authors: Usman Ali, Bayram Bayramli, Hongtao Lu
- Abstract summary: We propose an unsupervised center-based clustering approach capable of progressively learning and exploiting the underlying re-id discriminative information.
We call our framework Temporal Continuity based Unsupervised Learning (TCUL)
Specifically, TCUL simultaneously does center based clustering of unlabeled (target) dataset and fine-tunes a convolutional neural network (CNN) pre-trained on irrelevant labeled (source) dataset.
It exploits temporally continuous nature of images within-camera jointly with spatial similarity of feature maps across-cameras to generate reliable pseudo-labels for training a re-identification model.
- Score: 15.195514083289801
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Person re-identification (re-id) aims to match the same person from images
taken across multiple cameras. Most existing person re-id methods generally
require a large amount of identity labeled data to act as discriminative
guideline for representation learning. Difficulty in manually collecting
identity labeled data leads to poor adaptability in practical scenarios. To
overcome this problem, we propose an unsupervised center-based clustering
approach capable of progressively learning and exploiting the underlying re-id
discriminative information from temporal continuity within a camera. We call
our framework Temporal Continuity based Unsupervised Learning (TCUL).
Specifically, TCUL simultaneously does center based clustering of unlabeled
(target) dataset and fine-tunes a convolutional neural network (CNN)
pre-trained on irrelevant labeled (source) dataset to enhance discriminative
capability of the CNN for the target dataset. Furthermore, it exploits
temporally continuous nature of images within-camera jointly with spatial
similarity of feature maps across-cameras to generate reliable pseudo-labels
for training a re-identification model. As the training progresses, number of
reliable samples keep on growing adaptively which in turn boosts representation
ability of the CNN. Extensive experiments on three large-scale person re-id
benchmark datasets are conducted to compare our framework with state-of-the-art
techniques, which demonstrate superiority of TCUL over existing methods.
Related papers
- Pose-Transformation and Radial Distance Clustering for Unsupervised Person Re-identification [5.522856885199346]
Person re-identification (re-ID) aims to tackle the problem of matching identities across non-overlapping cameras.
Supervised approaches require identity information that may be difficult to obtain and are inherently biased towards the dataset they are trained on.
We propose an unsupervised approach to the person re-ID setup. Having zero knowledge of true labels, our proposed method enhances the discriminating ability of the learned features.
arXiv Detail & Related papers (2024-11-06T20:55:30Z) - Self-Supervised Multi-Object Tracking For Autonomous Driving From
Consistency Across Timescales [53.55369862746357]
Self-supervised multi-object trackers have tremendous potential as they enable learning from raw domain-specific data.
However, their re-identification accuracy still falls short compared to their supervised counterparts.
We propose a training objective that enables self-supervised learning of re-identification features from multiple sequential frames.
arXiv Detail & Related papers (2023-04-25T20:47:29Z) - Unsupervised Person Re-identification with Stochastic Training Strategy [29.639040901941726]
State-of-the-art unsupervised re-ID methods usually follow a clustering-based strategy.
Forcing images to get closer to the centroid emphasizes the result of clustering.
Previous methods utilize features obtained at different training iterations to represent one centroid.
We propose an unsupervised re-ID approach with a learning strategy.
arXiv Detail & Related papers (2021-08-16T07:23:58Z) - Unsupervised Person Re-identification via Simultaneous Clustering and
Consistency Learning [22.008371113710137]
We design a pretext task for unsupervised re-ID by learning visual consistency from still images and temporal consistency during training process.
We optimize the model by grouping the two encoded views into same cluster, thus enhancing the visual consistency between views.
arXiv Detail & Related papers (2021-04-01T02:10:42Z) - Unsupervised Noisy Tracklet Person Re-identification [100.85530419892333]
We present a novel selective tracklet learning (STL) approach that can train discriminative person re-id models from unlabelled tracklet data.
This avoids the tedious and costly process of exhaustively labelling person image/tracklet true matching pairs across camera views.
Our method is particularly more robust against arbitrary noisy data of raw tracklets therefore scalable to learning discriminative models from unconstrained tracking data.
arXiv Detail & Related papers (2021-01-16T07:31:00Z) - ORDisCo: Effective and Efficient Usage of Incremental Unlabeled Data for
Semi-supervised Continual Learning [52.831894583501395]
Continual learning assumes the incoming data are fully labeled, which might not be applicable in real applications.
We propose deep Online Replay with Discriminator Consistency (ORDisCo) to interdependently learn a classifier with a conditional generative adversarial network (GAN)
We show ORDisCo achieves significant performance improvement on various semi-supervised learning benchmark datasets for SSCL.
arXiv Detail & Related papers (2021-01-02T09:04:14Z) - Camera-aware Proxies for Unsupervised Person Re-Identification [60.26031011794513]
This paper tackles the purely unsupervised person re-identification (Re-ID) problem that requires no annotations.
We propose to split each single cluster into multiple proxies and each proxy represents the instances coming from the same camera.
Based on the camera-aware proxies, we design both intra- and inter-camera contrastive learning components for our Re-ID model.
arXiv Detail & Related papers (2020-12-19T12:37:04Z) - Federated Self-Supervised Learning of Multi-Sensor Representations for
Embedded Intelligence [8.110949636804772]
Smartphones, wearables, and Internet of Things (IoT) devices produce a wealth of data that cannot be accumulated in a centralized repository for learning supervised models.
We propose a self-supervised approach termed textitscalogram-signal correspondence learning based on wavelet transform to learn useful representations from unlabeled sensor inputs.
We extensively assess the quality of learned features with our multi-view strategy on diverse public datasets, achieving strong performance in all domains.
arXiv Detail & Related papers (2020-07-25T21:59:17Z) - Exploiting Temporal Coherence for Self-Supervised One-shot Video
Re-identification [44.9767103065442]
One-shot re-identification is a potential candidate towards reducing this labeling effort.
Current one-shot re-identification methods function by modeling the inter-relationships amongst the labeled and the unlabeled data.
We propose a new framework named Temporal Consistency Progressive Learning, which uses temporal coherence as a novel self-supervised auxiliary task.
arXiv Detail & Related papers (2020-07-21T19:49:06Z) - Unsupervised Person Re-identification via Softened Similarity Learning [122.70472387837542]
Person re-identification (re-ID) is an important topic in computer vision.
This paper studies the unsupervised setting of re-ID, which does not require any labeled information.
Experiments on two image-based and video-based datasets demonstrate state-of-the-art performance.
arXiv Detail & Related papers (2020-04-07T17:16:41Z) - Intra-Camera Supervised Person Re-Identification [87.88852321309433]
We propose a novel person re-identification paradigm based on an idea of independent per-camera identity annotation.
This eliminates the most time-consuming and tedious inter-camera identity labelling process.
We formulate a Multi-tAsk mulTi-labEl (MATE) deep learning method for Intra-Camera Supervised (ICS) person re-id.
arXiv Detail & Related papers (2020-02-12T15:26:33Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.