Automated Storytelling via Causal, Commonsense Plot Ordering
- URL: http://arxiv.org/abs/2009.00829v2
- Date: Wed, 30 Dec 2020 18:39:22 GMT
- Title: Automated Storytelling via Causal, Commonsense Plot Ordering
- Authors: Prithviraj Ammanabrolu, Wesley Cheung, William Broniec, Mark O. Riedl
- Abstract summary: Causal relations between plot events are believed to increase the perception of story and plot coherence.
We introduce the concept of soft causal relations as causal relations inferred from commonsense reasoning.
- Score: 20.032706455801353
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Automated story plot generation is the task of generating a coherent sequence
of plot events. Causal relations between plot events are believed to increase
the perception of story and plot coherence. In this work, we introduce the
concept of soft causal relations as causal relations inferred from commonsense
reasoning. We demonstrate C2PO, an approach to narrative generation that
operationalizes this concept through Causal, Commonsense Plot Ordering. Using
human-participant protocols, we evaluate our system against baseline systems
with different commonsense reasoning reasoning and inductive biases to
determine the role of soft causal relations in perceived story quality. Through
these studies we also probe the interplay of how changes in commonsense norms
across storytelling genres affect perceptions of story quality.
Related papers
- Generating Visual Stories with Grounded and Coreferent Characters [63.07511918366848]
We present the first model capable of predicting visual stories with consistently grounded and coreferent character mentions.
Our model is finetuned on a new dataset which we build on top of the widely used VIST benchmark.
We also propose new evaluation metrics to measure the richness of characters and coreference in stories.
arXiv Detail & Related papers (2024-09-20T14:56:33Z) - SCO-VIST: Social Interaction Commonsense Knowledge-based Visual
Storytelling [12.560014305032437]
This paper introduces SCO-VIST, a framework representing the image sequence as a graph with objects and relations.
SCO-VIST then takes this graph representing plot points and creates bridges between plot points with semantic and occurrence-based edge weights.
This weighted story graph produces the storyline in a sequence of events using Floyd-Warshall's algorithm.
arXiv Detail & Related papers (2024-02-01T04:09:17Z) - DeltaScore: Fine-Grained Story Evaluation with Perturbations [69.33536214124878]
We introduce DELTASCORE, a novel methodology that employs perturbation techniques for the evaluation of nuanced story aspects.
Our central proposition posits that the extent to which a story excels in a specific aspect (e.g., fluency) correlates with the magnitude of its susceptibility to particular perturbations.
We measure the quality of an aspect by calculating the likelihood difference between pre- and post-perturbation states using pre-trained language models.
arXiv Detail & Related papers (2023-03-15T23:45:54Z) - Neural Story Planning [8.600049807193413]
We present an approach to story plot generation that unifies causal planning with neural language models.
Our system infers the preconditions for events in the story and then events that will cause those conditions to become true.
Results indicate that our proposed method produces more coherent plotlines than several strong baselines.
arXiv Detail & Related papers (2022-12-16T21:29:41Z) - Persona-Guided Planning for Controlling the Protagonist's Persona in
Story Generation [71.24817035071176]
We propose a planning-based generation model named CONPER to explicitly model the relationship between personas and events.
Both automatic and manual evaluation results demonstrate that CONPER outperforms state-of-the-art baselines for generating more coherent and persona-controllable stories.
arXiv Detail & Related papers (2022-04-22T13:45:02Z) - Computational Lens on Cognition: Study Of Autobiographical Versus
Imagined Stories With Large-Scale Language Models [95.88620740809004]
We study differences in the narrative flow of events in autobiographical versus imagined stories using GPT-3.
We found that imagined stories have higher sequentiality than autobiographical stories.
In comparison to imagined stories, autobiographical stories contain more concrete words and words related to the first person.
arXiv Detail & Related papers (2022-01-07T20:10:47Z) - Consistency and Coherency Enhanced Story Generation [35.08911595854691]
We propose a two-stage generation framework to enhance consistency and coherency of generated stories.
The first stage is to organize the story outline which depicts the story plots and events, and the second stage is to expand the outline into a complete story.
In addition, coreference supervision signals are incorporated to reduce coreference errors and improve the coreference consistency.
arXiv Detail & Related papers (2020-10-17T16:40:37Z) - Once Upon A Time In Visualization: Understanding the Use of Textual
Narratives for Causality [21.67542584041709]
Causality visualization can help people understand temporal chains of events.
But as the scale and complexity of these event sequences grows, even these visualizations can become overwhelming to use.
We propose the use of textual narratives as a data-driven storytelling method to augment causality visualization.
arXiv Detail & Related papers (2020-09-06T05:46:24Z) - PlotMachines: Outline-Conditioned Generation with Dynamic Plot State
Tracking [128.76063992147016]
We present PlotMachines, a neural narrative model that learns to transform an outline into a coherent story by tracking the dynamic plot states.
In addition, we enrich PlotMachines with high-level discourse structure so that the model can learn different writing styles corresponding to different parts of the narrative.
arXiv Detail & Related papers (2020-04-30T17:16:31Z) - A Knowledge-Enhanced Pretraining Model for Commonsense Story Generation [98.25464306634758]
We propose to utilize commonsense knowledge from external knowledge bases to generate reasonable stories.
We employ multi-task learning which combines a discriminative objective to distinguish true and fake stories.
Our model can generate more reasonable stories than state-of-the-art baselines, particularly in terms of logic and global coherence.
arXiv Detail & Related papers (2020-01-15T05:42:27Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.