e-TLD: Event-based Framework for Dynamic Object Tracking
- URL: http://arxiv.org/abs/2009.00855v1
- Date: Wed, 2 Sep 2020 07:08:56 GMT
- Title: e-TLD: Event-based Framework for Dynamic Object Tracking
- Authors: Bharath Ramesh, Shihao Zhang, Hong Yang, Andres Ussa, Matthew Ong,
Garrick Orchard and Cheng Xiang
- Abstract summary: This paper presents a long-term object tracking framework with a moving event camera under general tracking conditions.
The framework uses a discriminative representation for the object with online learning, and detects and re-tracks the object when it comes back into the field-of-view.
- Score: 23.026432675020683
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: This paper presents a long-term object tracking framework with a moving event
camera under general tracking conditions. A first of its kind for these
revolutionary cameras, the tracking framework uses a discriminative
representation for the object with online learning, and detects and re-tracks
the object when it comes back into the field-of-view. One of the key novelties
is the use of an event-based local sliding window technique that tracks
reliably in scenes with cluttered and textured background. In addition,
Bayesian bootstrapping is used to assist real-time processing and boost the
discriminative power of the object representation. On the other hand, when the
object re-enters the field-of-view of the camera, a data-driven, global sliding
window detector locates the object for subsequent tracking. Extensive
experiments demonstrate the ability of the proposed framework to track and
detect arbitrary objects of various shapes and sizes, including dynamic objects
such as a human. This is a significant improvement compared to earlier works
that simply track objects as long as they are visible under simpler background
settings. Using the ground truth locations for five different objects under
three motion settings, namely translation, rotation and 6-DOF, quantitative
measurement is reported for the event-based tracking framework with critical
insights on various performance issues. Finally, real-time implementation in
C++ highlights tracking ability under scale, rotation, view-point and occlusion
scenarios in a lab setting.
Related papers
- Distractor-aware Event-based Tracking [45.07711356111249]
We propose a distractor-aware event-based tracker that introduces transformer modules into Siamese network architecture (named DANet)
Our model is mainly composed of a motion-aware network and a target-aware network, which simultaneously exploits both motion cues and object contours from event data.
Our DANet can be trained in an end-to-end manner without any post-processing and can run at over 80 FPS on a single V100.
arXiv Detail & Related papers (2023-10-22T05:50:20Z) - SpikeMOT: Event-based Multi-Object Tracking with Sparse Motion Features [52.213656737672935]
SpikeMOT is an event-based multi-object tracker.
SpikeMOT uses spiking neural networks to extract sparsetemporal features from event streams associated with objects.
arXiv Detail & Related papers (2023-09-29T05:13:43Z) - DORT: Modeling Dynamic Objects in Recurrent for Multi-Camera 3D Object
Detection and Tracking [67.34803048690428]
We propose to model Dynamic Objects in RecurrenT (DORT) to tackle this problem.
DORT extracts object-wise local volumes for motion estimation that also alleviates the heavy computational burden.
It is flexible and practical that can be plugged into most camera-based 3D object detectors.
arXiv Detail & Related papers (2023-03-29T12:33:55Z) - TripletTrack: 3D Object Tracking using Triplet Embeddings and LSTM [0.0]
3D object tracking is a critical task in autonomous driving systems.
In this paper we investigate the use of triplet embeddings in combination with motion representations for 3D object tracking.
arXiv Detail & Related papers (2022-10-28T15:23:50Z) - SpOT: Spatiotemporal Modeling for 3D Object Tracking [68.12017780034044]
3D multi-object tracking aims to consistently identify all mobile time.
Current 3D tracking methods rely on abstracted information and limited history.
We develop a holistic representation of scenes that leverage both spatial and temporal information.
arXiv Detail & Related papers (2022-07-12T21:45:49Z) - Learning to Track with Object Permanence [61.36492084090744]
We introduce an end-to-end trainable approach for joint object detection and tracking.
Our model, trained jointly on synthetic and real data, outperforms the state of the art on KITTI, and MOT17 datasets.
arXiv Detail & Related papers (2021-03-26T04:43:04Z) - Visual Tracking by TridentAlign and Context Embedding [71.60159881028432]
We propose novel TridentAlign and context embedding modules for Siamese network-based visual tracking methods.
The performance of the proposed tracker is comparable to that of state-of-the-art trackers, while the proposed tracker runs at real-time speed.
arXiv Detail & Related papers (2020-07-14T08:00:26Z) - End-to-end Learning of Object Motion Estimation from Retinal Events for
Event-based Object Tracking [35.95703377642108]
We propose a novel deep neural network to learn and regress a parametric object-level motion/transform model for event-based object tracking.
To achieve this goal, we propose a synchronous Time-Surface with Linear Time Decay representation.
We feed the sequence of TSLTD frames to a novel Retinal Motion Regression Network (RMRNet) perform to an end-to-end 5-DoF object motion regression.
arXiv Detail & Related papers (2020-02-14T08:19:50Z) - Asynchronous Tracking-by-Detection on Adaptive Time Surfaces for
Event-based Object Tracking [87.0297771292994]
We propose an Event-based Tracking-by-Detection (ETD) method for generic bounding box-based object tracking.
To achieve this goal, we present an Adaptive Time-Surface with Linear Time Decay (ATSLTD) event-to-frame conversion algorithm.
We compare the proposed ETD method with seven popular object tracking methods, that are based on conventional cameras or event cameras, and two variants of ETD.
arXiv Detail & Related papers (2020-02-13T15:58:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.