Simulating Unknown Target Models for Query-Efficient Black-box Attacks
- URL: http://arxiv.org/abs/2009.00960v2
- Date: Tue, 6 Apr 2021 14:01:46 GMT
- Title: Simulating Unknown Target Models for Query-Efficient Black-box Attacks
- Authors: Chen Ma, Li Chen, Jun-Hai Yong
- Abstract summary: adversarial attacks have been proposed to investigate the security issues of deep neural networks.
In the black-box setting, current model stealing attacks train a substitute model to counterfeit the functionality of the target model.
This study aims to train a generalized substitute model called "Simulator", which can mimic the functionality of any unknown target model.
- Score: 21.21690695534498
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many adversarial attacks have been proposed to investigate the security
issues of deep neural networks. In the black-box setting, current model
stealing attacks train a substitute model to counterfeit the functionality of
the target model. However, the training requires querying the target model.
Consequently, the query complexity remains high, and such attacks can be
defended easily. This study aims to train a generalized substitute model called
"Simulator", which can mimic the functionality of any unknown target model. To
this end, we build the training data with the form of multiple tasks by
collecting query sequences generated during the attacks of various existing
networks. The learning process uses a mean square error-based
knowledge-distillation loss in the meta-learning to minimize the difference
between the Simulator and the sampled networks. The meta-gradients of this loss
are then computed and accumulated from multiple tasks to update the Simulator
and subsequently improve generalization. When attacking a target model that is
unseen in training, the trained Simulator can accurately simulate its
functionality using its limited feedback. As a result, a large fraction of
queries can be transferred to the Simulator, thereby reducing query complexity.
Results of the comprehensive experiments conducted using the CIFAR-10,
CIFAR-100, and TinyImageNet datasets demonstrate that the proposed approach
reduces query complexity by several orders of magnitude compared to the
baseline method. The implementation source code is released at
https://github.com/machanic/SimulatorAttack.
Related papers
- Autonomous Vehicle Controllers From End-to-End Differentiable Simulation [60.05963742334746]
We propose a differentiable simulator and design an analytic policy gradients (APG) approach to training AV controllers.
Our proposed framework brings the differentiable simulator into an end-to-end training loop, where gradients of environment dynamics serve as a useful prior to help the agent learn a more grounded policy.
We find significant improvements in performance and robustness to noise in the dynamics, as well as overall more intuitive human-like handling.
arXiv Detail & Related papers (2024-09-12T11:50:06Z) - BruSLeAttack: A Query-Efficient Score-Based Black-Box Sparse Adversarial Attack [22.408968332454062]
We study the unique, less-well understood problem of generating sparse adversarial samples simply by observing the score-based replies to model queries.
We develop the BruSLeAttack-a new, faster (more query-efficient) algorithm for the problem.
Our work facilitates faster evaluation of model vulnerabilities and raises our vigilance on the safety, security and reliability of deployed systems.
arXiv Detail & Related papers (2024-04-08T08:59:26Z) - Pandora's White-Box: Precise Training Data Detection and Extraction in Large Language Models [4.081098869497239]
We develop state-of-the-art privacy attacks against Large Language Models (LLMs)
New membership inference attacks (MIAs) against pretrained LLMs perform hundreds of times better than baseline attacks.
In fine-tuning, we find that a simple attack based on the ratio of the loss between the base and fine-tuned models is able to achieve near-perfect MIA performance.
arXiv Detail & Related papers (2024-02-26T20:41:50Z) - Fast Propagation is Better: Accelerating Single-Step Adversarial
Training via Sampling Subnetworks [69.54774045493227]
A drawback of adversarial training is the computational overhead introduced by the generation of adversarial examples.
We propose to exploit the interior building blocks of the model to improve efficiency.
Compared with previous methods, our method not only reduces the training cost but also achieves better model robustness.
arXiv Detail & Related papers (2023-10-24T01:36:20Z) - One-bit Flip is All You Need: When Bit-flip Attack Meets Model Training [54.622474306336635]
A new weight modification attack called bit flip attack (BFA) was proposed, which exploits memory fault inject techniques.
We propose a training-assisted bit flip attack, in which the adversary is involved in the training stage to build a high-risk model to release.
arXiv Detail & Related papers (2023-08-12T09:34:43Z) - Query Efficient Cross-Dataset Transferable Black-Box Attack on Action
Recognition [99.29804193431823]
Black-box adversarial attacks present a realistic threat to action recognition systems.
We propose a new attack on action recognition that addresses these shortcomings by generating perturbations.
Our method achieves 8% and higher 12% deception rates compared to state-of-the-art query-based and transfer-based attacks.
arXiv Detail & Related papers (2022-11-23T17:47:49Z) - Real-to-Sim: Predicting Residual Errors of Robotic Systems with Sparse
Data using a Learning-based Unscented Kalman Filter [65.93205328894608]
We learn the residual errors between a dynamic and/or simulator model and the real robot.
We show that with the learned residual errors, we can further close the reality gap between dynamic models, simulations, and actual hardware.
arXiv Detail & Related papers (2022-09-07T15:15:12Z) - Attackar: Attack of the Evolutionary Adversary [0.0]
This paper introduces textitAttackar, an evolutionary, score-based, black-box attack.
Attackar is based on a novel objective function that can be used in gradient-free optimization problems.
Our results demonstrate the superior performance of Attackar, both in terms of accuracy score and query efficiency.
arXiv Detail & Related papers (2022-08-17T13:57:23Z) - Multi-granularity Textual Adversarial Attack with Behavior Cloning [4.727534308759158]
We propose MAYA, a Multi-grAnularitY Attack model to generate high-quality adversarial samples with fewer queries to victim models.
We conduct comprehensive experiments to evaluate our attack models by attacking BiLSTM, BERT and RoBERTa in two different black-box attack settings and three benchmark datasets.
arXiv Detail & Related papers (2021-09-09T15:46:45Z) - MT3: Meta Test-Time Training for Self-Supervised Test-Time Adaption [69.76837484008033]
An unresolved problem in Deep Learning is the ability of neural networks to cope with domain shifts during test-time.
We combine meta-learning, self-supervision and test-time training to learn to adapt to unseen test distributions.
Our approach significantly improves the state-of-the-art results on the CIFAR-10-Corrupted image classification benchmark.
arXiv Detail & Related papers (2021-03-30T09:33:38Z) - Leveraging Siamese Networks for One-Shot Intrusion Detection Model [0.0]
Supervised Machine Learning (ML) to enhance Intrusion Detection Systems has been the subject of significant research.
retraining the models in-situ renders the network susceptible to attacks owing to the time-window required to acquire a sufficient volume of data.
Here, a complementary approach referred to as 'One-Shot Learning', whereby a limited number of examples of a new attack-class is used to identify a new attack-class.
A Siamese Network is trained to differentiate between classes based on pairs similarities, rather than features, allowing to identify new and previously unseen attacks.
arXiv Detail & Related papers (2020-06-27T11:40:01Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.