Differentially private $k$-means clustering via exponential mechanism
and max cover
- URL: http://arxiv.org/abs/2009.01220v1
- Date: Wed, 2 Sep 2020 17:52:54 GMT
- Title: Differentially private $k$-means clustering via exponential mechanism
and max cover
- Authors: Anamay Chaturvedi, Huy Nguyen, Eric Xu
- Abstract summary: We introduce a new $(epsilon_p, delta_p)$-differentially private algorithm for the $k$-means clustering problem.
- Score: 6.736814259597673
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: We introduce a new $(\epsilon_p, \delta_p)$-differentially private algorithm
for the $k$-means clustering problem. Given a dataset in Euclidean space, the
$k$-means clustering problem requires one to find $k$ points in that space such
that the sum of squares of Euclidean distances between each data point and its
closest respective point among the $k$ returned is minimised. Although there
exist privacy-preserving methods with good theoretical guarantees to solve this
problem [Balcan et al., 2017; Kaplan and Stemmer, 2018], in practice it is seen
that it is the additive error which dictates the practical performance of these
methods. By reducing the problem to a sequence of instances of maximum coverage
on a grid, we are able to derive a new method that achieves lower additive
error then previous works. For input datasets with cardinality $n$ and diameter
$\Delta$, our algorithm has an $O(\Delta^2 (k \log^2 n
\log(1/\delta_p)/\epsilon_p + k\sqrt{d \log(1/\delta_p)}/\epsilon_p))$ additive
error whilst maintaining constant multiplicative error. We conclude with some
experiments and find an improvement over previously implemented work for this
problem.
Related papers
- A Scalable Algorithm for Individually Fair K-means Clustering [77.93955971520549]
We present a scalable algorithm for the individually fair ($p$, $k$)-clustering problem introduced by Jung et al. and Mahabadi et al.
A clustering is then called individually fair if it has centers within distance $delta(x)$ of $x$ for each $xin P$.
We show empirically that not only is our algorithm much faster than prior work, but it also produces lower-cost solutions.
arXiv Detail & Related papers (2024-02-09T19:01:48Z) - Sketching Algorithms for Sparse Dictionary Learning: PTAS and Turnstile
Streaming [48.18845814885398]
We develop new techniques to extend the applicability of sketching-based approaches to sparse dictionary learning and the Euclidean $k$-means clustering problems.
On the fast algorithms front, we obtain a new approach for designing PTAS's for the $k$-means clustering problem.
On the streaming algorithms front, we obtain new upper bounds and lower bounds for dictionary learning and $k$-means clustering.
arXiv Detail & Related papers (2023-10-29T16:46:26Z) - Simple, Scalable and Effective Clustering via One-Dimensional
Projections [10.807367640692021]
Clustering is a fundamental problem in unsupervised machine learning with many applications in data analysis.
We introduce a simple randomized clustering algorithm that provably runs in expected time $O(mathrmnnz(X) + nlog n)$ for arbitrary $k$.
We prove that our algorithm achieves approximation ratio $smashwidetildeO(k4)$ on any input dataset for the $k$-means objective.
arXiv Detail & Related papers (2023-10-25T16:37:45Z) - The Computational Complexity of Finding Stationary Points in Non-Convex Optimization [53.86485757442486]
Finding approximate stationary points, i.e., points where the gradient is approximately zero, of non-order but smooth objective functions is a computational problem.
We show that finding approximate KKT points in constrained optimization is reducible to finding approximate stationary points in unconstrained optimization but the converse is impossible.
arXiv Detail & Related papers (2023-10-13T14:52:46Z) - Differential Privacy for Clustering Under Continual Observation [5.220940151628734]
We consider the problem of clustering privately a dataset in $mathbbRd$ that undergoes both insertion and deletion of points.
We give an $varepsilon$-differentially private clustering mechanism for the $k$-means objective under continual observation.
arXiv Detail & Related papers (2023-07-07T07:23:56Z) - Fast $(1+\varepsilon)$-Approximation Algorithms for Binary Matrix
Factorization [54.29685789885059]
We introduce efficient $(1+varepsilon)$-approximation algorithms for the binary matrix factorization (BMF) problem.
The goal is to approximate $mathbfA$ as a product of low-rank factors.
Our techniques generalize to other common variants of the BMF problem.
arXiv Detail & Related papers (2023-06-02T18:55:27Z) - Improved Learning-augmented Algorithms for k-means and k-medians
Clustering [8.04779839951237]
We consider the problem of clustering in the learning-augmented setting, where we are given a data set in $d$-dimensional Euclidean space.
We propose a deterministic $k$-means algorithm that produces centers with improved bound on clustering cost.
Our algorithm works even when the predictions are not very accurate, i.e. our bound holds for $alpha$ up to $1/2$, an improvement over $alpha$ being at most $1/7$ in the previous work.
arXiv Detail & Related papers (2022-10-31T03:00:11Z) - Nonconvex-Nonconcave Min-Max Optimization with a Small Maximization
Domain [11.562923882714093]
We study the problem of finding approximate first-order stationary points in optimization problems of the form $min_x in max_y in Y f(x,y)
Our approach relies upon replacing the function $f(x,cdot)$ with its $kth order Taylor approximation (in $y$) and finding a near-stationary point in $Y$.
arXiv Detail & Related papers (2021-10-08T07:46:18Z) - Locally Private $k$-Means Clustering with Constant Multiplicative
Approximation and Near-Optimal Additive Error [10.632986841188]
We bridge the gap between the exponents of $n$ in the upper and lower bounds on the additive error with two new algorithms.
It is possible to solve the locally private $k$-means problem in a constant number of rounds with constant factor multiplicative approximation.
arXiv Detail & Related papers (2021-05-31T14:41:40Z) - Streaming Complexity of SVMs [110.63976030971106]
We study the space complexity of solving the bias-regularized SVM problem in the streaming model.
We show that for both problems, for dimensions of $frac1lambdaepsilon$, one can obtain streaming algorithms with spacely smaller than $frac1lambdaepsilon$.
arXiv Detail & Related papers (2020-07-07T17:10:00Z) - Maximizing Determinants under Matroid Constraints [69.25768526213689]
We study the problem of finding a basis $S$ of $M$ such that $det(sum_i in Sv_i v_i v_itop)$ is maximized.
This problem appears in a diverse set of areas such as experimental design, fair allocation of goods, network design, and machine learning.
arXiv Detail & Related papers (2020-04-16T19:16:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.