SAC: Semantic Attention Composition for Text-Conditioned Image Retrieval
- URL: http://arxiv.org/abs/2009.01485v2
- Date: Tue, 19 Oct 2021 19:02:15 GMT
- Title: SAC: Semantic Attention Composition for Text-Conditioned Image Retrieval
- Authors: Surgan Jandial, Pinkesh Badjatiya, Pranit Chawla, Ayush Chopra,
Mausoom Sarkar, Balaji Krishnamurthy
- Abstract summary: We focus on the task of text-conditioned image retrieval that utilizes support text feedback alongside a reference image to retrieve images.
We propose a novel framework SAC which resolves the above in two major steps: "where to see" (Semantic Feature Attention) and "how to change"
We show how our architecture streamlines the generation of text-aware image features by removing the need for various modules required by other state-of-art techniques.
- Score: 15.074592583852167
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The ability to efficiently search for images is essential for improving the
user experiences across various products. Incorporating user feedback, via
multi-modal inputs, to navigate visual search can help tailor retrieved results
to specific user queries. We focus on the task of text-conditioned image
retrieval that utilizes support text feedback alongside a reference image to
retrieve images that concurrently satisfy constraints imposed by both inputs.
The task is challenging since it requires learning composite image-text
features by incorporating multiple cross-granular semantic edits from text
feedback and then applying the same to visual features. To address this, we
propose a novel framework SAC which resolves the above in two major steps:
"where to see" (Semantic Feature Attention) and "how to change" (Semantic
Feature Modification). We systematically show how our architecture streamlines
the generation of text-aware image features by removing the need for various
modules required by other state-of-art techniques. We present extensive
quantitative, qualitative analysis, and ablation studies, to show that our
architecture SAC outperforms existing techniques by achieving state-of-the-art
performance on 3 benchmark datasets: FashionIQ, Shoes, and Birds-to-Words,
while supporting natural language feedback of varying lengths.
Related papers
- StrucTexTv3: An Efficient Vision-Language Model for Text-rich Image Perception, Comprehension, and Beyond [68.0107158115377]
We have crafted an efficient vision-language model, StrucTexTv3, tailored to tackle various intelligent tasks for text-rich images.
We enhance the perception and comprehension abilities of StrucTexTv3 through instruction learning.
Our method achieved SOTA results in text-rich image perception tasks, and significantly improved performance in comprehension tasks.
arXiv Detail & Related papers (2024-05-31T16:55:04Z) - Enhancing Interactive Image Retrieval With Query Rewriting Using Large Language Models and Vision Language Models [17.171715290673678]
We propose an interactive image retrieval system capable of refining queries based on user relevance feedback.
This system incorporates a vision language model (VLM) based image captioner to enhance the quality of text-based queries.
To evaluate our system, we curate a new dataset by adapting the MSR-VTT video retrieval dataset to the image retrieval task.
arXiv Detail & Related papers (2024-04-29T14:46:35Z) - You'll Never Walk Alone: A Sketch and Text Duet for Fine-Grained Image Retrieval [120.49126407479717]
We introduce a novel compositionality framework, effectively combining sketches and text using pre-trained CLIP models.
Our system extends to novel applications in composed image retrieval, domain transfer, and fine-grained generation.
arXiv Detail & Related papers (2024-03-12T00:27:18Z) - TextFormer: A Query-based End-to-End Text Spotter with Mixed Supervision [61.186488081379]
We propose TextFormer, a query-based end-to-end text spotter with Transformer architecture.
TextFormer builds upon an image encoder and a text decoder to learn a joint semantic understanding for multi-task modeling.
It allows for mutual training and optimization of classification, segmentation, and recognition branches, resulting in deeper feature sharing.
arXiv Detail & Related papers (2023-06-06T03:37:41Z) - BOSS: Bottom-up Cross-modal Semantic Composition with Hybrid
Counterfactual Training for Robust Content-based Image Retrieval [61.803481264081036]
Content-Based Image Retrieval (CIR) aims to search for a target image by concurrently comprehending the composition of an example image and a complementary text.
We tackle this task by a novel underlinetextbfBottom-up crunderlinetextbfOss-modal underlinetextbfSemantic compounderlinetextbfSition (textbfBOSS) with Hybrid Counterfactual Training framework.
arXiv Detail & Related papers (2022-07-09T07:14:44Z) - ARTEMIS: Attention-based Retrieval with Text-Explicit Matching and
Implicit Similarity [16.550790981646276]
Current approaches combine the features of each of the two elements of the query into a single representation.
Our work aims at shedding new light on the task by looking at it through the prism of two familiar and related frameworks: text-to-image and image-to-image retrieval.
arXiv Detail & Related papers (2022-03-15T17:29:20Z) - Learning Semantic-Aligned Feature Representation for Text-based Person
Search [8.56017285139081]
We propose a semantic-aligned embedding method for text-based person search.
The feature alignment across modalities is achieved by automatically learning the semantic-aligned visual features and textual features.
Experimental results on the CUHK-PEDES and Flickr30K datasets show that our method achieves state-of-the-art performances.
arXiv Detail & Related papers (2021-12-13T14:54:38Z) - Text-based Person Search in Full Images via Semantic-Driven Proposal
Generation [42.25611020956918]
We propose a new end-to-end learning framework which jointly optimize the pedestrian detection, identification and visual-semantic feature embedding tasks.
To take full advantage of the query text, the semantic features are leveraged to instruct the Region Proposal Network to pay more attention to the text-described proposals.
arXiv Detail & Related papers (2021-09-27T11:42:40Z) - Matching Visual Features to Hierarchical Semantic Topics for Image
Paragraph Captioning [50.08729005865331]
This paper develops a plug-and-play hierarchical-topic-guided image paragraph generation framework.
To capture the correlations between the image and text at multiple levels of abstraction, we design a variational inference network.
To guide the paragraph generation, the learned hierarchical topics and visual features are integrated into the language model.
arXiv Detail & Related papers (2021-05-10T06:55:39Z) - TextCaps: a Dataset for Image Captioning with Reading Comprehension [56.89608505010651]
Text is omnipresent in human environments and frequently critical to understand our surroundings.
To study how to comprehend text in the context of an image we collect a novel dataset, TextCaps, with 145k captions for 28k images.
Our dataset challenges a model to recognize text, relate it to its visual context, and decide what part of the text to copy or paraphrase.
arXiv Detail & Related papers (2020-03-24T02:38:35Z) - Fine-grained Image Classification and Retrieval by Combining Visual and
Locally Pooled Textual Features [8.317191999275536]
In particular, the mere presence of text provides strong guiding content that should be employed to tackle a diversity of computer vision tasks.
In this paper, we address the problem of fine-grained classification and image retrieval by leveraging textual information along with visual cues to comprehend the existing intrinsic relation between the two modalities.
arXiv Detail & Related papers (2020-01-14T12:06:12Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.