CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning
- URL: http://arxiv.org/abs/2009.01674v1
- Date: Thu, 3 Sep 2020 13:57:18 GMT
- Title: CAGNN: Cluster-Aware Graph Neural Networks for Unsupervised Graph
Representation Learning
- Authors: Yanqiao Zhu and Yichen Xu and Feng Yu and Shu Wu and Liang Wang
- Abstract summary: Unsupervised graph representation learning aims to learn low-dimensional node embeddings without supervision.
We present a novel cluster-aware graph neural network (CAGNN) model for unsupervised graph representation learning using self-supervised techniques.
- Score: 19.432449825536423
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Unsupervised graph representation learning aims to learn low-dimensional node
embeddings without supervision while preserving graph topological structures
and node attributive features. Previous graph neural networks (GNN) require a
large number of labeled nodes, which may not be accessible in real-world graph
data. In this paper, we present a novel cluster-aware graph neural network
(CAGNN) model for unsupervised graph representation learning using
self-supervised techniques. In CAGNN, we perform clustering on the node
embeddings and update the model parameters by predicting the cluster
assignments. Moreover, we observe that graphs often contain inter-class edges,
which mislead the GNN model to aggregate noisy information from neighborhood
nodes. We further refine the graph topology by strengthening intra-class edges
and reducing node connections between different classes based on cluster
labels, which better preserves cluster structures in the embedding space. We
conduct comprehensive experiments on two benchmark tasks using real-world
datasets. The results demonstrate the superior performance of the proposed
model over existing baseline methods. Notably, our model gains over 7%
improvements in terms of accuracy on node clustering over state-of-the-arts.
Related papers
- LSEnet: Lorentz Structural Entropy Neural Network for Deep Graph Clustering [59.89626219328127]
Graph clustering is a fundamental problem in machine learning.
Deep learning methods achieve the state-of-the-art results in recent years, but they still cannot work without predefined cluster numbers.
We propose to address this problem from a fresh perspective of graph information theory.
arXiv Detail & Related papers (2024-05-20T05:46:41Z) - You do not have to train Graph Neural Networks at all on text-attributed graphs [25.044734252779975]
We introduce TrainlessGNN, a linear GNN model capitalizing on the observation that text encodings from the same class often cluster together in a linear subspace.
Our experiments reveal that our trainless models can either match or even surpass their conventionally trained counterparts.
arXiv Detail & Related papers (2024-04-17T02:52:11Z) - Cluster-based Graph Collaborative Filtering [55.929052969825825]
Graph Convolution Networks (GCNs) have succeeded in learning user and item representations for recommendation systems.
Most existing GCN-based methods overlook the multiple interests of users while performing high-order graph convolution.
We propose a novel GCN-based recommendation model, termed Cluster-based Graph Collaborative Filtering (ClusterGCF)
arXiv Detail & Related papers (2024-04-16T07:05:16Z) - A Variational Edge Partition Model for Supervised Graph Representation
Learning [51.30365677476971]
This paper introduces a graph generative process to model how the observed edges are generated by aggregating the node interactions over a set of overlapping node communities.
We partition each edge into the summation of multiple community-specific weighted edges and use them to define community-specific GNNs.
A variational inference framework is proposed to jointly learn a GNN based inference network that partitions the edges into different communities, these community-specific GNNs, and a GNN based predictor that combines community-specific GNNs for the end classification task.
arXiv Detail & Related papers (2022-02-07T14:37:50Z) - ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network [72.16255675586089]
We propose an Adaptive Curvature Exploration Hyperbolic Graph NeuralNetwork named ACE-HGNN to adaptively learn the optimal curvature according to the input graph and downstream tasks.
Experiments on multiple real-world graph datasets demonstrate a significant and consistent performance improvement in model quality with competitive performance and good generalization ability.
arXiv Detail & Related papers (2021-10-15T07:18:57Z) - Learning Hierarchical Graph Neural Networks for Image Clustering [81.5841862489509]
We propose a hierarchical graph neural network (GNN) model that learns how to cluster a set of images into an unknown number of identities.
Our hierarchical GNN uses a novel approach to merge connected components predicted at each level of the hierarchy to form a new graph at the next level.
arXiv Detail & Related papers (2021-07-03T01:28:42Z) - GAIN: Graph Attention & Interaction Network for Inductive
Semi-Supervised Learning over Large-scale Graphs [18.23435958000212]
Graph Neural Networks (GNNs) have led to state-of-the-art performance on a variety of machine learning tasks such as recommendation, node classification and link prediction.
Most existing GNN models exploit a single type of aggregator to aggregate neighboring nodes information.
We propose a novel graph neural network architecture, Graph Attention & Interaction Network (GAIN), for inductive learning on graphs.
arXiv Detail & Related papers (2020-11-03T00:20:24Z) - Graph InfoClust: Leveraging cluster-level node information for
unsupervised graph representation learning [12.592903558338444]
We propose a graph representation learning method called Graph InfoClust.
It seeks to additionally capture cluster-level information content.
This optimization leads the node representations to capture richer information and nodal interactions, which improves their quality.
arXiv Detail & Related papers (2020-09-15T09:33:20Z) - Graph Clustering with Graph Neural Networks [5.305362965553278]
Graph Neural Networks (GNNs) have achieved state-of-the-art results on many graph analysis tasks.
Unsupervised problems on graphs, such as graph clustering, have proved more resistant to advances in GNNs.
We introduce Deep Modularity Networks (DMoN), an unsupervised pooling method inspired by the modularity measure of clustering quality.
arXiv Detail & Related papers (2020-06-30T15:30:49Z) - Self-Enhanced GNN: Improving Graph Neural Networks Using Model Outputs [20.197085398581397]
Graph neural networks (GNNs) have received much attention recently because of their excellent performance on graph-based tasks.
We propose self-enhanced GNN (SEG), which improves the quality of the input data using the outputs of existing GNN models.
SEG consistently improves the performance of well-known GNN models such as GCN, GAT and SGC across different datasets.
arXiv Detail & Related papers (2020-02-18T12:27:16Z) - Graph Inference Learning for Semi-supervised Classification [50.55765399527556]
We propose a Graph Inference Learning framework to boost the performance of semi-supervised node classification.
For learning the inference process, we introduce meta-optimization on structure relations from training nodes to validation nodes.
Comprehensive evaluations on four benchmark datasets demonstrate the superiority of our proposed GIL when compared against state-of-the-art methods.
arXiv Detail & Related papers (2020-01-17T02:52:30Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.