MIPGAN -- Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN
- URL: http://arxiv.org/abs/2009.01729v3
- Date: Wed, 7 Apr 2021 11:02:03 GMT
- Title: MIPGAN -- Generating Strong and High Quality Morphing Attacks Using
Identity Prior Driven GAN
- Authors: Haoyu Zhang, Sushma Venkatesh, Raghavendra Ramachandra, Kiran Raja,
Naser Damer, Christoph Busch
- Abstract summary: We present a new approach for generating strong attacks using an Identity Prior Driven Generative Adversarial Network.
The proposed MIPGAN is derived from the StyleGAN with a newly formulated loss function exploiting perceptual quality and identity factor.
We demonstrate the proposed approach's applicability to generate strong morphing attacks by evaluating its vulnerability against both commercial and deep learning based Face Recognition System.
- Score: 22.220940043294334
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Face morphing attacks target to circumvent Face Recognition Systems (FRS) by
employing face images derived from multiple data subjects (e.g., accomplices
and malicious actors). Morphed images can be verified against contributing data
subjects with a reasonable success rate, given they have a high degree of
facial resemblance. The success of morphing attacks is directly dependent on
the quality of the generated morph images. We present a new approach for
generating strong attacks extending our earlier framework for generating face
morphs. We present a new approach using an Identity Prior Driven Generative
Adversarial Network, which we refer to as MIPGAN (Morphing through Identity
Prior driven GAN). The proposed MIPGAN is derived from the StyleGAN with a
newly formulated loss function exploiting perceptual quality and identity
factor to generate a high quality morphed facial image with minimal artefacts
and with high resolution. We demonstrate the proposed approach's applicability
to generate strong morphing attacks by evaluating its vulnerability against
both commercial and deep learning based Face Recognition System (FRS) and
demonstrate the success rate of attacks. Extensive experiments are carried out
to assess the FRS's vulnerability against the proposed morphed face generation
technique on three types of data such as digital images, re-digitized (printed
and scanned) images, and compressed images after re-digitization from newly
generated MIPGAN Face Morph Dataset. The obtained results demonstrate that the
proposed approach of morph generation poses a high threat to FRS.
Related papers
- LADIMO: Face Morph Generation through Biometric Template Inversion with Latent Diffusion [5.602947425285195]
Face morphing attacks pose a severe security threat to face recognition systems.
We present a representation-level face morphing approach, namely LADIMO, that performs morphing on two face recognition embeddings.
We show that each face morph variant has an individual attack success rate, enabling us to maximize the morph attack potential.
arXiv Detail & Related papers (2024-10-10T14:41:37Z) - DiffusionFace: Towards a Comprehensive Dataset for Diffusion-Based Face Forgery Analysis [71.40724659748787]
DiffusionFace is the first diffusion-based face forgery dataset.
It covers various forgery categories, including unconditional and Text Guide facial image generation, Img2Img, Inpaint, and Diffusion-based facial exchange algorithms.
It provides essential metadata and a real-world internet-sourced forgery facial image dataset for evaluation.
arXiv Detail & Related papers (2024-03-27T11:32:44Z) - Hierarchical Generative Network for Face Morphing Attacks [7.34597796509503]
Face morphing attacks circumvent face recognition systems (FRSs) by creating a morphed image that contains multiple identities.
We propose a novel morphing attack method to improve the quality of morphed images and better preserve the contributing identities.
arXiv Detail & Related papers (2024-03-17T06:09:27Z) - Optimal-Landmark-Guided Image Blending for Face Morphing Attacks [8.024953195407502]
We propose a novel approach for conducting face morphing attacks, which utilizes optimal-landmark-guided image blending.
Our proposed method overcomes the limitations of previous approaches by optimizing the morphing landmarks and using Graph Convolutional Networks (GCNs) to combine landmark and appearance features.
arXiv Detail & Related papers (2024-01-30T03:45:06Z) - Attribute-Guided Encryption with Facial Texture Masking [64.77548539959501]
We propose Attribute Guided Encryption with Facial Texture Masking to protect users from unauthorized facial recognition systems.
Our proposed method produces more natural-looking encrypted images than state-of-the-art methods.
arXiv Detail & Related papers (2023-05-22T23:50:43Z) - MorphGANFormer: Transformer-based Face Morphing and De-Morphing [55.211984079735196]
StyleGAN-based approaches to face morphing are among the leading techniques.
We propose a transformer-based alternative to face morphing and demonstrate its superiority to StyleGAN-based methods.
arXiv Detail & Related papers (2023-02-18T19:09:11Z) - Landmark Enforcement and Style Manipulation for Generative Morphing [24.428843425522107]
We propose a novel StyleGAN morph generation technique by introducing a landmark enforcement method to resolve this issue.
Exploration of the latent space of our model is conducted using Principal Component Analysis (PCA) to accentuate the effect of both the bona fide faces on the morphed latent representation.
To improve high frequency reconstruction in the morphs, we study the train-ability of the noise input for the StyleGAN2 model.
arXiv Detail & Related papers (2022-10-18T22:10:25Z) - GMFIM: A Generative Mask-guided Facial Image Manipulation Model for
Privacy Preservation [0.7734726150561088]
We propose a Generative Mask-guided Face Image Manipulation model based on GANs to apply imperceptible editing to the input face image.
Our model can achieve better performance against automated face recognition systems in comparison to the state-of-the-art methods.
arXiv Detail & Related papers (2022-01-10T14:09:14Z) - Unsupervised Learning Facial Parameter Regressor for Action Unit
Intensity Estimation via Differentiable Renderer [51.926868759681014]
We present a framework to predict the facial parameters based on a bone-driven face model (BDFM) under different views.
The proposed framework consists of a feature extractor, a generator, and a facial parameter regressor.
arXiv Detail & Related papers (2020-08-20T09:49:13Z) - DotFAN: A Domain-transferred Face Augmentation Network for Pose and
Illumination Invariant Face Recognition [94.96686189033869]
We propose a 3D model-assisted domain-transferred face augmentation network (DotFAN)
DotFAN can generate a series of variants of an input face based on the knowledge distilled from existing rich face datasets collected from other domains.
Experiments show that DotFAN is beneficial for augmenting small face datasets to improve their within-class diversity.
arXiv Detail & Related papers (2020-02-23T08:16:34Z) - Joint Deep Learning of Facial Expression Synthesis and Recognition [97.19528464266824]
We propose a novel joint deep learning of facial expression synthesis and recognition method for effective FER.
The proposed method involves a two-stage learning procedure. Firstly, a facial expression synthesis generative adversarial network (FESGAN) is pre-trained to generate facial images with different facial expressions.
In order to alleviate the problem of data bias between the real images and the synthetic images, we propose an intra-class loss with a novel real data-guided back-propagation (RDBP) algorithm.
arXiv Detail & Related papers (2020-02-06T10:56:00Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.