Revisiting Co-Occurring Directions: Sharper Analysis and Efficient
Algorithm for Sparse Matrices
- URL: http://arxiv.org/abs/2009.02553v2
- Date: Thu, 17 Dec 2020 06:55:55 GMT
- Title: Revisiting Co-Occurring Directions: Sharper Analysis and Efficient
Algorithm for Sparse Matrices
- Authors: Luo Luo, Cheng Chen, Guangzeng Xie, Haishan Ye
- Abstract summary: We study the streaming model for approximate matrix multiplication (AMM)
We are interested in the scenario that the algorithm can only take one pass over the data with limited memory.
The state-of-the-art deterministic sketching algorithm for streaming AMM is the co-occurring directions (COD)
- Score: 23.22254890452548
- License: http://creativecommons.org/publicdomain/zero/1.0/
- Abstract: We study the streaming model for approximate matrix multiplication (AMM). We
are interested in the scenario that the algorithm can only take one pass over
the data with limited memory. The state-of-the-art deterministic sketching
algorithm for streaming AMM is the co-occurring directions (COD), which has
much smaller approximation errors than randomized algorithms and outperforms
other deterministic sketching methods empirically. In this paper, we provide a
tighter error bound for COD whose leading term considers the potential
approximate low-rank structure and the correlation of input matrices. We prove
COD is space optimal with respect to our improved error bound. We also propose
a variant of COD for sparse matrices with theoretical guarantees. The
experiments on real-world sparse datasets show that the proposed algorithm is
more efficient than baseline methods.
Related papers
- Spectral Entry-wise Matrix Estimation for Low-Rank Reinforcement
Learning [53.445068584013896]
We study matrix estimation problems arising in reinforcement learning (RL) with low-rank structure.
In low-rank bandits, the matrix to be recovered specifies the expected arm rewards, and for low-rank Markov Decision Processes (MDPs), it may for example characterize the transition kernel of the MDP.
We show that simple spectral-based matrix estimation approaches efficiently recover the singular subspaces of the matrix and exhibit nearly-minimal entry-wise error.
arXiv Detail & Related papers (2023-10-10T17:06:41Z) - An Efficient Algorithm for Clustered Multi-Task Compressive Sensing [60.70532293880842]
Clustered multi-task compressive sensing is a hierarchical model that solves multiple compressive sensing tasks.
The existing inference algorithm for this model is computationally expensive and does not scale well in high dimensions.
We propose a new algorithm that substantially accelerates model inference by avoiding the need to explicitly compute these covariance matrices.
arXiv Detail & Related papers (2023-09-30T15:57:14Z) - Algorithme EM r\'egularis\'e [0.0]
This paper presents a regularized version of the EM algorithm that efficiently uses prior knowledge to cope with a small sample size.
Experiments on real data highlight the good performance of the proposed algorithm for clustering purposes.
arXiv Detail & Related papers (2023-07-04T23:19:25Z) - Learning the Positions in CountSketch [49.57951567374372]
We consider sketching algorithms which first compress data by multiplication with a random sketch matrix, and then apply the sketch to quickly solve an optimization problem.
In this work, we propose the first learning-based algorithms that also optimize the locations of the non-zero entries.
arXiv Detail & Related papers (2023-06-11T07:28:35Z) - Linearized Wasserstein dimensionality reduction with approximation
guarantees [65.16758672591365]
LOT Wassmap is a computationally feasible algorithm to uncover low-dimensional structures in the Wasserstein space.
We show that LOT Wassmap attains correct embeddings and that the quality improves with increased sample size.
We also show how LOT Wassmap significantly reduces the computational cost when compared to algorithms that depend on pairwise distance computations.
arXiv Detail & Related papers (2023-02-14T22:12:16Z) - Asymmetric Scalable Cross-modal Hashing [51.309905690367835]
Cross-modal hashing is a successful method to solve large-scale multimedia retrieval issue.
We propose a novel Asymmetric Scalable Cross-Modal Hashing (ASCMH) to address these issues.
Our ASCMH outperforms the state-of-the-art cross-modal hashing methods in terms of accuracy and efficiency.
arXiv Detail & Related papers (2022-07-26T04:38:47Z) - Fast Projected Newton-like Method for Precision Matrix Estimation under
Total Positivity [15.023842222803058]
Current algorithms are designed using the block coordinate descent method or the proximal point algorithm.
We propose a novel algorithm based on the two-metric projection method, incorporating a carefully designed search direction and variable partitioning scheme.
Experimental results on synthetic and real-world datasets demonstrate that our proposed algorithm provides a significant improvement in computational efficiency compared to the state-of-the-art methods.
arXiv Detail & Related papers (2021-12-03T14:39:10Z) - Sparse PCA via $l_{2,p}$-Norm Regularization for Unsupervised Feature
Selection [138.97647716793333]
We propose a simple and efficient unsupervised feature selection method, by combining reconstruction error with $l_2,p$-norm regularization.
We present an efficient optimization algorithm to solve the proposed unsupervised model, and analyse the convergence and computational complexity of the algorithm theoretically.
arXiv Detail & Related papers (2020-12-29T04:08:38Z) - Estimating Multiple Precision Matrices with Cluster Fusion
Regularization [0.90238471756546]
We propose a penalized likelihood estimating multiple precision matrices from different classes.
Most existing methods either incorporate no information on relationships between the precision matrices, or require this information be a priori.
arXiv Detail & Related papers (2020-03-01T01:03:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.