GraphNorm: A Principled Approach to Accelerating Graph Neural Network
Training
- URL: http://arxiv.org/abs/2009.03294v3
- Date: Fri, 11 Jun 2021 09:35:15 GMT
- Title: GraphNorm: A Principled Approach to Accelerating Graph Neural Network
Training
- Authors: Tianle Cai, Shengjie Luo, Keyulu Xu, Di He, Tie-Yan Liu, Liwei Wang
- Abstract summary: We study what normalization is effective for Graph Neural Networks (GNNs)
Faster convergence is achieved with InstanceNorm compared to BatchNorm and LayerNorm.
GraphNorm also improves the generalization of GNNs, achieving better performance on graph classification benchmarks.
- Score: 101.3819906739515
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Normalization is known to help the optimization of deep neural networks.
Curiously, different architectures require specialized normalization methods.
In this paper, we study what normalization is effective for Graph Neural
Networks (GNNs). First, we adapt and evaluate the existing methods from other
domains to GNNs. Faster convergence is achieved with InstanceNorm compared to
BatchNorm and LayerNorm. We provide an explanation by showing that InstanceNorm
serves as a preconditioner for GNNs, but such preconditioning effect is weaker
with BatchNorm due to the heavy batch noise in graph datasets. Second, we show
that the shift operation in InstanceNorm results in an expressiveness
degradation of GNNs for highly regular graphs. We address this issue by
proposing GraphNorm with a learnable shift. Empirically, GNNs with GraphNorm
converge faster compared to GNNs using other normalization. GraphNorm also
improves the generalization of GNNs, achieving better performance on graph
classification benchmarks.
Related papers
- Faster Inference Time for GNNs using coarsening [1.323700980948722]
coarsening-based methods are used to reduce the graph into a smaller one, resulting in faster computation.
No previous research has tackled the cost during the inference.
This paper presents a novel approach to improve the scalability of GNNs through subgraph-based techniques.
arXiv Detail & Related papers (2024-10-19T06:27:24Z) - Learning to Reweight for Graph Neural Network [63.978102332612906]
Graph Neural Networks (GNNs) show promising results for graph tasks.
Existing GNNs' generalization ability will degrade when there exist distribution shifts between testing and training graph data.
We propose a novel nonlinear graph decorrelation method, which can substantially improve the out-of-distribution generalization ability.
arXiv Detail & Related papers (2023-12-19T12:25:10Z) - Robust Graph Neural Network based on Graph Denoising [10.564653734218755]
Graph Neural Networks (GNNs) have emerged as a notorious alternative to address learning problems dealing with non-Euclidean datasets.
This work proposes a robust implementation of GNNs that explicitly accounts for the presence of perturbations in the observed topology.
arXiv Detail & Related papers (2023-12-11T17:43:57Z) - Implicit Graph Neural Diffusion Networks: Convergence, Generalization,
and Over-Smoothing [7.984586585987328]
Implicit Graph Neural Networks (GNNs) have achieved significant success in addressing graph learning problems.
We introduce a geometric framework for designing implicit graph diffusion layers based on a parameterized graph Laplacian operator.
We show how implicit GNN layers can be viewed as the fixed-point equation of a Dirichlet energy minimization problem.
arXiv Detail & Related papers (2023-08-07T05:22:33Z) - Training Graph Neural Networks on Growing Stochastic Graphs [114.75710379125412]
Graph Neural Networks (GNNs) rely on graph convolutions to exploit meaningful patterns in networked data.
We propose to learn GNNs on very large graphs by leveraging the limit object of a sequence of growing graphs, the graphon.
arXiv Detail & Related papers (2022-10-27T16:00:45Z) - ResNorm: Tackling Long-tailed Degree Distribution Issue in Graph Neural
Networks via Normalization [80.90206641975375]
This paper focuses on improving the performance of GNNs via normalization.
By studying the long-tailed distribution of node degrees in the graph, we propose a novel normalization method for GNNs.
The $scale$ operation of ResNorm reshapes the node-wise standard deviation (NStd) distribution so as to improve the accuracy of tail nodes.
arXiv Detail & Related papers (2022-06-16T13:49:09Z) - Adaptive Kernel Graph Neural Network [21.863238974404474]
Graph neural networks (GNNs) have demonstrated great success in representation learning for graph-structured data.
In this paper, we propose a novel framework - i.e., namely Adaptive Kernel Graph Neural Network (AKGNN)
AKGNN learns to adapt to the optimal graph kernel in a unified manner at the first attempt.
Experiments are conducted on acknowledged benchmark datasets and promising results demonstrate the outstanding performance of our proposed AKGNN.
arXiv Detail & Related papers (2021-12-08T20:23:58Z) - Increase and Conquer: Training Graph Neural Networks on Growing Graphs [116.03137405192356]
We consider the problem of learning a graphon neural network (WNN) by training GNNs on graphs sampled Bernoulli from the graphon.
Inspired by these results, we propose an algorithm to learn GNNs on large-scale graphs that, starting from a moderate number of nodes, successively increases the size of the graph during training.
arXiv Detail & Related papers (2021-06-07T15:05:59Z) - Scalable Graph Neural Networks for Heterogeneous Graphs [12.44278942365518]
Graph neural networks (GNNs) are a popular class of parametric model for learning over graph-structured data.
Recent work has argued that GNNs primarily use the graph for feature smoothing, and have shown competitive results on benchmark tasks.
In this work, we ask whether these results can be extended to heterogeneous graphs, which encode multiple types of relationship between different entities.
arXiv Detail & Related papers (2020-11-19T06:03:35Z) - A Unified View on Graph Neural Networks as Graph Signal Denoising [49.980783124401555]
Graph Neural Networks (GNNs) have risen to prominence in learning representations for graph structured data.
In this work, we establish mathematically that the aggregation processes in a group of representative GNN models can be regarded as solving a graph denoising problem.
We instantiate a novel GNN model, ADA-UGNN, derived from UGNN, to handle graphs with adaptive smoothness across nodes.
arXiv Detail & Related papers (2020-10-05T04:57:18Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.