Quantum receiver for phase-shift keying at the single photon level
- URL: http://arxiv.org/abs/2009.03339v2
- Date: Sun, 31 Jan 2021 23:26:59 GMT
- Title: Quantum receiver for phase-shift keying at the single photon level
- Authors: Jasminder S. Sidhu, Shuro Izumi, Jonas S. Neergaard-Nielsen, Cosmo
Lupo, Ulrik L. Andersen
- Abstract summary: We propose and experimentally demonstrate a new decoding scheme for quadrature phase-shift encoded signals.
Our receiver surpasses the standard quantum limit and outperforms all previously known non-adaptive detectors at low input powers.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Quantum enhanced receivers are endowed with resources to achieve higher
sensitivities than conventional technologies. For application in optical
communications, they provide improved discriminatory capabilities for multiple
non-orthogonal quantum states. In this work, we propose and experimentally
demonstrate a new decoding scheme for quadrature phase-shift encoded signals.
Our receiver surpasses the standard quantum limit and outperforms all
previously known non-adaptive detectors at low input powers. Unlike existing
approaches, the receiver only exploits linear optical elements and on-off
photo-detection. This circumvents the requirement for challenging feed-forward
operations that limit communication transmission rates and can be readily
implemented with current technology.
Related papers
- Quantum computer-enabled receivers for optical communication [0.44241702149260353]
coherent transceivers use phase- and amplitude-modulated optical signals to encode more bits of information per transmitted pulse.
Such encoding schemes achieve higher information density, but also require more complicated receivers to discriminate the signaling states.
We describe how optomechanical transduction of phase information from coherent optical pulses to superconducting qubit states can perform joint detection of communication codewords with error probabilities that surpass all classical, individual pulse detection receivers.
arXiv Detail & Related papers (2023-09-27T18:00:05Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Hybrid quantum transfer learning for crack image classification on NISQ
hardware [62.997667081978825]
We present an application of quantum transfer learning for detecting cracks in gray value images.
We compare the performance and training time of PennyLane's standard qubits with IBM's qasm_simulator and real backends.
arXiv Detail & Related papers (2023-07-31T14:45:29Z) - Amplification of cascaded downconversion by reusing photons with a
switchable cavity [62.997667081978825]
We propose a scheme to amplify triplet production rates by using a fast switch and a delay loop.
Our proof-of-concept device increases the rate of detected photon triplets as predicted.
arXiv Detail & Related papers (2022-09-23T15:53:44Z) - Quantum Limits on the Capacity of Multispan Links with Phase-sensitive
Amplification [5.156484100374058]
We show that the quantum advantage over the standard approach based on optical quadrature detection is small and vanishes for long links.
We derive ultimate limits determined by the laws of quantum mechanics on the capacity of multispan links with phase sensitive amplification.
arXiv Detail & Related papers (2022-07-21T18:00:09Z) - High-Dimensional Entanglement for Quantum Communication in the Frequency
Domain [0.0]
High-dimensional photonic entanglement is a promising candidate for error-protected quantum information processing.
This study shows how to harness the large frequency-entanglement inherent in standard continuous-wave spontaneous down-conversion processes.
arXiv Detail & Related papers (2022-06-02T10:08:28Z) - Switch networks for photonic fusion-based quantum computing [0.0]
Fusion-based quantum computing (FBQC) offers a powerful approach to building a fault-tolerant universal quantum computer.
FBQC uses single-photon sources, linear-optical circuits, single-photon detectors, and optical switching with feedforward control.
New techniques and schemes enable major improvements in terms of muxing efficiency and reductions in hardware requirements.
arXiv Detail & Related papers (2021-09-28T14:31:30Z) - Moving beyond the transmon: Noise-protected superconducting quantum
circuits [55.49561173538925]
superconducting circuits offer opportunities to store and process quantum information with high fidelity.
Noise-protected devices constitute a new class of qubits in which the computational states are largely decoupled from local noise channels.
This Perspective reviews the theoretical principles at the heart of these new qubits, describes recent experiments, and highlights the potential of robust encoding of quantum information in superconducting qubits.
arXiv Detail & Related papers (2021-06-18T18:00:13Z) - Conditional preparation of non-Gaussian quantum optical states by
mesoscopic measurement [62.997667081978825]
Non-Gaussian states of an optical field are important as a proposed resource in quantum information applications.
We propose a novel approach involving displacement of the ancilla field into the regime where mesoscopic detectors can be used.
We conclude that states with strong Wigner negativity can be prepared at high rates by this technique under experimentally attainable conditions.
arXiv Detail & Related papers (2021-03-29T16:59:18Z) - Demonstration of quantum advantage by a joint detection receiver for
optical communications using quantum belief propagation on a trapped-ion
device [0.7758302353877525]
We present an experimental realization of a quantum joint detection receiver for binary phase shift keying codewords of a 3-bit linear tree code.
The receiver, translated to a quantum circuit, was experimentally implemented on a trapped-ion device.
We provide an experimental framework that surpasses the quantum limit on the minimum average decoding error probability.
arXiv Detail & Related papers (2021-02-25T18:05:31Z) - Rapid characterisation of linear-optical networks via PhaseLift [51.03305009278831]
Integrated photonics offers great phase-stability and can rely on the large scale manufacturability provided by the semiconductor industry.
New devices, based on such optical circuits, hold the promise of faster and energy-efficient computations in machine learning applications.
We present a novel technique to reconstruct the transfer matrix of linear optical networks.
arXiv Detail & Related papers (2020-10-01T16:04:22Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.