Leam: An Interactive System for In-situ Visual Text Analysis
- URL: http://arxiv.org/abs/2009.03520v1
- Date: Tue, 8 Sep 2020 05:18:29 GMT
- Title: Leam: An Interactive System for In-situ Visual Text Analysis
- Authors: Sajjadur Rahman and Peter Griggs and \c{C}a\u{g}atay Demiralp
- Abstract summary: Leam is a system that treats the text analysis process as a single continuum by combining advantages of computational notebooks, spreadsheets, and visualization tools.
We report our current progress in Leam development while demonstrating its usefulness with usage examples.
- Score: 0.6445605125467573
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: With the increase in scale and availability of digital text generated on the
web, enterprises such as online retailers and aggregators often use text
analytics to mine and analyze the data to improve their services and products
alike. Text data analysis is an iterative, non-linear process with diverse
workflows spanning multiple stages, from data cleaning to visualization.
Existing text analytics systems usually accommodate a subset of these stages
and often fail to address challenges related to data heterogeneity, provenance,
workflow reusability and reproducibility, and compatibility with established
practices. Based on a set of design considerations we derive from these
challenges, we propose Leam, a system that treats the text analysis process as
a single continuum by combining advantages of computational notebooks,
spreadsheets, and visualization tools. Leam features an interactive user
interface for running text analysis workflows, a new data model for managing
multiple atomic and composite data types, and an expressive algebra that
captures diverse sets of operations representing various stages of text
analysis and enables coordination among different components of the system,
including data, code, and visualizations. We report our current progress in
Leam development while demonstrating its usefulness with usage examples.
Finally, we outline a number of enhancements to Leam and identify several
research directions for developing an interactive visual text analysis system.
Related papers
- Flex: End-to-End Text-Instructed Visual Navigation with Foundation Models [59.892436892964376]
We investigate the minimal data requirements and architectural adaptations necessary to achieve robust closed-loop performance with vision-based control policies.
Our findings are synthesized in Flex (Fly-lexically), a framework that uses pre-trained Vision Language Models (VLMs) as frozen patch-wise feature extractors.
We demonstrate the effectiveness of this approach on quadrotor fly-to-target tasks, where agents trained via behavior cloning successfully generalize to real-world scenes.
arXiv Detail & Related papers (2024-10-16T19:59:31Z) - "Show Me What's Wrong!": Combining Charts and Text to Guide Data Analysis [4.016592757754338]
In the context of financial fraud detection, analysts must quickly identify suspicious activity among transactional data.
This is an iterative process made of complex exploratory tasks such as recognizing patterns, grouping, and comparing.
To mitigate the information overload inherent to these steps, we present a tool combining automated information highlights, Large Language Model generated textual insights, and visual analytics.
arXiv Detail & Related papers (2024-10-01T14:16:10Z) - Data Analysis in the Era of Generative AI [56.44807642944589]
This paper explores the potential of AI-powered tools to reshape data analysis, focusing on design considerations and challenges.
We explore how the emergence of large language and multimodal models offers new opportunities to enhance various stages of data analysis workflow.
We then examine human-centered design principles that facilitate intuitive interactions, build user trust, and streamline the AI-assisted analysis workflow across multiple apps.
arXiv Detail & Related papers (2024-09-27T06:31:03Z) - Knowledge-Aware Reasoning over Multimodal Semi-structured Tables [85.24395216111462]
This study investigates whether current AI models can perform knowledge-aware reasoning on multimodal structured data.
We introduce MMTabQA, a new dataset designed for this purpose.
Our experiments highlight substantial challenges for current AI models in effectively integrating and interpreting multiple text and image inputs.
arXiv Detail & Related papers (2024-08-25T15:17:43Z) - Towards Unified Multi-granularity Text Detection with Interactive Attention [56.79437272168507]
"Detect Any Text" is an advanced paradigm that unifies scene text detection, layout analysis, and document page detection into a cohesive, end-to-end model.
A pivotal innovation in DAT is the across-granularity interactive attention module, which significantly enhances the representation learning of text instances.
Tests demonstrate that DAT achieves state-of-the-art performances across a variety of text-related benchmarks.
arXiv Detail & Related papers (2024-05-30T07:25:23Z) - generAItor: Tree-in-the-Loop Text Generation for Language Model
Explainability and Adaptation [28.715001906405362]
Large language models (LLMs) are widely deployed in various downstream tasks, e.g., auto-completion, aided writing, or chat-based text generation.
We tackle this shortcoming by proposing a tree-in-the-loop approach, where a visual representation of the beam search tree is the central component for analyzing, explaining, and adapting the generated outputs.
We present generAItor, a visual analytics technique, augmenting the central beam search tree with various task-specific widgets, providing targeted visualizations and interaction possibilities.
arXiv Detail & Related papers (2024-03-12T13:09:15Z) - Visual Analytics of Multivariate Networks with Representation Learning and Composite Variable Construction [19.265502727154473]
This paper presents a visual analytics workflow for studying multivariate networks.
It consists of a neural-network-based learning phase to classify the data, a dimensionality reduction and optimization phase, and an interpreting phase conducted by the user.
A key part of our design is a composite variable construction step that remodels nonlinear features obtained by neural networks into linear features that are intuitive to interpret.
arXiv Detail & Related papers (2023-03-16T18:31:18Z) - Vision+X: A Survey on Multimodal Learning in the Light of Data [64.03266872103835]
multimodal machine learning that incorporates data from various sources has become an increasingly popular research area.
We analyze the commonness and uniqueness of each data format mainly ranging from vision, audio, text, and motions.
We investigate the existing literature on multimodal learning from both the representation learning and downstream application levels.
arXiv Detail & Related papers (2022-10-05T13:14:57Z) - Distributed intelligence on the Edge-to-Cloud Continuum: A systematic
literature review [62.997667081978825]
This review aims at providing a comprehensive vision of the main state-of-the-art libraries and frameworks for machine learning and data analytics available today.
The main simulation, emulation, deployment systems, and testbeds for experimental research on the Edge-to-Cloud Continuum available today are also surveyed.
arXiv Detail & Related papers (2022-04-29T08:06:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.