Trajectory Based Podcast Recommendation
- URL: http://arxiv.org/abs/2009.03859v1
- Date: Tue, 8 Sep 2020 16:49:12 GMT
- Title: Trajectory Based Podcast Recommendation
- Authors: Greg Benton, Ghazal Fazelnia, Alice Wang, Ben Carterette
- Abstract summary: We show that successful and consistent recommendations can be made by viewing users as moving through the podcast library sequentially.
Our approach gives a450% increase in effectiveness over a collaborative filtering baseline.
- Score: 6.366468661321732
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Podcast recommendation is a growing area of research that presents new
challenges and opportunities. Individuals interact with podcasts in a way that
is distinct from most other media; and primary to our concerns is distinct from
music consumption. We show that successful and consistent recommendations can
be made by viewing users as moving through the podcast library sequentially.
Recommendations for future podcasts are then made using the trajectory taken
from their sequential behavior. Our experiments provide evidence that user
behavior is confined to local trends, and that listening patterns tend to be
found over short sequences of similar types of shows. Ultimately, our approach
gives a450%increase in effectiveness over a collaborative filtering baseline.
Related papers
- Measuring Strategization in Recommendation: Users Adapt Their Behavior to Shape Future Content [66.71102704873185]
We test for user strategization by conducting a lab experiment and survey.
We find strong evidence of strategization across outcome metrics, including participants' dwell time and use of "likes"
Our findings suggest that platforms cannot ignore the effect of their algorithms on user behavior.
arXiv Detail & Related papers (2024-05-09T07:36:08Z) - Fairness Through Domain Awareness: Mitigating Popularity Bias For Music
Discovery [56.77435520571752]
We explore the intrinsic relationship between music discovery and popularity bias.
We propose a domain-aware, individual fairness-based approach which addresses popularity bias in graph neural network (GNNs) based recommender systems.
Our approach uses individual fairness to reflect a ground truth listening experience, i.e., if two songs sound similar, this similarity should be reflected in their representations.
arXiv Detail & Related papers (2023-08-28T14:12:25Z) - Learning to Listen: Modeling Non-Deterministic Dyadic Facial Motion [89.01668641930206]
We present a framework for modeling interactional communication in dyadic conversations.
We autoregressively output multiple possibilities of corresponding listener motion.
Our method organically captures the multimodal and non-deterministic nature of nonverbal dyadic interactions.
arXiv Detail & Related papers (2022-04-18T17:58:04Z) - Topic Modeling on Podcast Short-Text Metadata [0.9539495585692009]
We assess the feasibility to discover relevant topics from podcast metadata, titles and descriptions, using modeling techniques for short text.
We propose a new strategy to named entities (NEs), often present in podcast metadata, in a Non-negative Matrix Factorization modeling framework.
Our experiments on two existing datasets from Spotify and iTunes and Deezer, show that our proposed document representation, NEiCE, leads to improved coherence over the baselines.
arXiv Detail & Related papers (2022-01-12T11:07:05Z) - Probabilistic and Variational Recommendation Denoising [56.879165033014026]
Learning from implicit feedback is one of the most common cases in the application of recommender systems.
We propose probabilistic and variational recommendation denoising for implicit feedback.
We employ the proposed DPI and DVAE on four state-of-the-art recommendation models and conduct experiments on three datasets.
arXiv Detail & Related papers (2021-05-20T08:59:44Z) - A Two-Phase Approach for Abstractive Podcast Summarization [18.35061145103997]
podcast summarization is different from summarization of other data formats.
We propose a two-phase approach: sentence selection and seq2seq learning.
Our approach achieves promising results regarding both ROUGE-based measures and human evaluations.
arXiv Detail & Related papers (2020-11-16T21:31:28Z) - PodSumm -- Podcast Audio Summarization [0.0]
We propose a method to automatically construct a podcast summary via guidance from the text-domain.
Motivated by a lack of datasets for this task, we curate an internal dataset, find an effective scheme for data augmentation, and design a protocol to gather summaries from annotators.
Our method achieves ROUGE-F(1/2/L) scores of 0.63/0.53/0.63 on our dataset.
arXiv Detail & Related papers (2020-09-22T04:49:33Z) - A Baseline Analysis for Podcast Abstractive Summarization [18.35061145103997]
This paper presents a baseline analysis of podcast summarization using the Spotify Podcast dataset.
It aims to help researchers understand current state-of-the-art pre-trained models and hence build a foundation for creating better models.
arXiv Detail & Related papers (2020-08-24T18:38:42Z) - Recommending Podcasts for Cold-Start Users Based on Music Listening and
Taste [5.429958676933934]
We consider podcasting as an emerging medium with rapid growth in adoption.
Using music consumption behavior, we examine two main techniques in inferring Spotify users preferences over more than 200k podcasts.
Our results show significant improvements in consumption of up to 50% for both offline and online experiments.
arXiv Detail & Related papers (2020-07-27T02:55:23Z) - Controllable Multi-Interest Framework for Recommendation [64.30030600415654]
We formalize the recommender system as a sequential recommendation problem.
We propose a novel controllable multi-interest framework for the sequential recommendation, called ComiRec.
Our framework has been successfully deployed on the offline Alibaba distributed cloud platform.
arXiv Detail & Related papers (2020-05-19T10:18:43Z) - A Bayesian Approach to Conversational Recommendation Systems [60.12942570608859]
We present a conversational recommendation system based on a Bayesian approach.
A case study based on the application of this approach to emphstagend.com, an online platform for booking entertainers, is discussed.
arXiv Detail & Related papers (2020-02-12T15:59:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.