Segmentation-free Estimation of Aortic Diameters from MRI Using Deep
Learning
- URL: http://arxiv.org/abs/2009.04507v1
- Date: Wed, 9 Sep 2020 18:28:00 GMT
- Title: Segmentation-free Estimation of Aortic Diameters from MRI Using Deep
Learning
- Authors: Axel Aguerreberry, Ezequiel de la Rosa, Alain Lalande and Elmer
Fernandez
- Abstract summary: We propose a supervised deep learning method for the direct estimation of aortic diameters.
Our approach makes use of a 3D+2D convolutional neural network (CNN) that takes as input a 3D scan and outputs the aortic diameter at a given location.
Overall, the 3D+2D CNN achieved a mean absolute error between 2.2-2.4 mm depending on the considered aortic location.
- Score: 2.231365407061881
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Accurate and reproducible measurements of the aortic diameters are crucial
for the diagnosis of cardiovascular diseases and for therapeutic decision
making. Currently, these measurements are manually performed by healthcare
professionals, being time consuming, highly variable, and suffering from lack
of reproducibility. In this work we propose a supervised deep learning method
for the direct estimation of aortic diameters. The approach is devised and
tested over 100 magnetic resonance angiography scans without contrast agent.
All data was expert-annotated at six aortic locations typically used in
clinical practice. Our approach makes use of a 3D+2D convolutional neural
network (CNN) that takes as input a 3D scan and outputs the aortic diameter at
a given location. In a 5-fold cross-validation comparison against a fully 3D
CNN and against a 3D multiresolution CNN, our approach was consistently
superior in predicting the aortic diameters. Overall, the 3D+2D CNN achieved a
mean absolute error between 2.2-2.4 mm depending on the considered aortic
location. These errors are less than 1 mm higher than the inter-observer
variability. Thus, suggesting that our method makes predictions almost reaching
the expert's performance. We conclude that the work allows to further explore
automatic algorithms for direct estimation of anatomical structures without the
necessity of a segmentation step. It also opens possibilities for the
automation of cardiovascular measurements in clinical settings.
Related papers
- Weakly supervised segmentation of intracranial aneurysms using a novel 3D focal modulation UNet [0.5106162890866905]
We propose FocalSegNet, a novel 3D focal modulation UNet, to detect an aneurysm and offer an initial, coarse segmentation of it from time-of-flight MRA image patches.
We trained and evaluated our model on a public dataset, and in terms of UIA detection, our model showed a low false-positive rate of 0.21 and a high sensitivity of 0.80.
arXiv Detail & Related papers (2023-08-06T03:28:08Z) - CT Perfusion is All We Need: 4D CNN Segmentation of Penumbra and Core in
Patients With Suspected Ischemic Stroke [1.6836876499886009]
This paper investigates different methods to utilize the entire 4 convolutionD as input to fully exploit thetemporal information.
Adopting the proposed 4D mJ-Net, a Dice Coefficient of 0.53 and 0.23 is achieved for segmenting penumbra and core areas, respectively.
arXiv Detail & Related papers (2023-03-15T16:53:19Z) - Non-invasive Localization of the Ventricular Excitation Origin Without
Patient-specific Geometries Using Deep Learning [0.6999972048611302]
Ventricular tachycardia (VT) can be one cause of sudden cardiac death affecting 4.25 million persons per year worldwide.
To facilitate and expedite the localization during the ablation procedure, we present two novel localization techniques based on convolutional neural networks (CNNs)
arXiv Detail & Related papers (2022-09-16T09:30:13Z) - Building Brains: Subvolume Recombination for Data Augmentation in Large
Vessel Occlusion Detection [56.67577446132946]
A large training data set is required for a standard deep learning-based model to learn this strategy from data.
We propose an augmentation method that generates artificial training samples by recombining vessel tree segmentations of the hemispheres from different patients.
In line with the augmentation scheme, we use a 3D-DenseNet fed with task-specific input, fostering a side-by-side comparison between the hemispheres.
arXiv Detail & Related papers (2022-05-05T10:31:57Z) - A unified 3D framework for Organs at Risk Localization and Segmentation
for Radiation Therapy Planning [56.52933974838905]
Current medical workflow requires manual delineation of organs-at-risk (OAR)
In this work, we aim to introduce a unified 3D pipeline for OAR localization-segmentation.
Our proposed framework fully enables the exploitation of 3D context information inherent in medical imaging.
arXiv Detail & Related papers (2022-03-01T17:08:41Z) - StRegA: Unsupervised Anomaly Detection in Brain MRIs using a Compact
Context-encoding Variational Autoencoder [48.2010192865749]
Unsupervised anomaly detection (UAD) can learn a data distribution from an unlabelled dataset of healthy subjects and then be applied to detect out of distribution samples.
This research proposes a compact version of the "context-encoding" VAE (ceVAE) model, combined with pre and post-processing steps, creating a UAD pipeline (StRegA)
The proposed pipeline achieved a Dice score of 0.642$pm$0.101 while detecting tumours in T2w images of the BraTS dataset and 0.859$pm$0.112 while detecting artificially induced anomalies.
arXiv Detail & Related papers (2022-01-31T14:27:35Z) - A Deep Learning Approach to Predicting Collateral Flow in Stroke
Patients Using Radiomic Features from Perfusion Images [58.17507437526425]
Collateral circulation results from specialized anastomotic channels which provide oxygenated blood to regions with compromised blood flow.
The actual grading is mostly done through manual inspection of the acquired images.
We present a deep learning approach to predicting collateral flow grading in stroke patients based on radiomic features extracted from MR perfusion data.
arXiv Detail & Related papers (2021-10-24T18:58:40Z) - CNN Based Segmentation of Infarcted Regions in Acute Cerebral Stroke
Patients From Computed Tomography Perfusion Imaging [2.1626699124055504]
Thrombolytic treatment can reduce brain damage but has a narrow treatment window.
Computed To Perfusion imaging is a commonly used primary assessment tool for stroke patients.
We propose a fully automated four-dimensional convolutional neural network based segmentation method.
arXiv Detail & Related papers (2021-04-07T09:09:13Z) - Revisiting 3D Context Modeling with Supervised Pre-training for
Universal Lesion Detection in CT Slices [48.85784310158493]
We propose a Modified Pseudo-3D Feature Pyramid Network (MP3D FPN) to efficiently extract 3D context enhanced 2D features for universal lesion detection in CT slices.
With the novel pre-training method, the proposed MP3D FPN achieves state-of-the-art detection performance on the DeepLesion dataset.
The proposed 3D pre-trained weights can potentially be used to boost the performance of other 3D medical image analysis tasks.
arXiv Detail & Related papers (2020-12-16T07:11:16Z) - Interactive Radiotherapy Target Delineation with 3D-Fused Context
Propagation [28.97228589610255]
Convolutional neural networks (CNNs) have been predominated on automatic 3D medical segmentation tasks.
We propose 3D-fused context propagation, which propagates any edited slice to the whole 3D volume.
arXiv Detail & Related papers (2020-12-12T17:46:20Z) - Appearance Learning for Image-based Motion Estimation in Tomography [60.980769164955454]
In tomographic imaging, anatomical structures are reconstructed by applying a pseudo-inverse forward model to acquired signals.
Patient motion corrupts the geometry alignment in the reconstruction process resulting in motion artifacts.
We propose an appearance learning approach recognizing the structures of rigid motion independently from the scanned object.
arXiv Detail & Related papers (2020-06-18T09:49:11Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.