Disentangling Neural Architectures and Weights: A Case Study in
Supervised Classification
- URL: http://arxiv.org/abs/2009.05346v1
- Date: Fri, 11 Sep 2020 11:22:22 GMT
- Title: Disentangling Neural Architectures and Weights: A Case Study in
Supervised Classification
- Authors: Nicolo Colombo and Yang Gao
- Abstract summary: This work investigates the problem of disentangling the role of the neural structure and its edge weights.
We show that well-trained architectures may not need any link-specific fine-tuning of the weights.
We use a novel and computationally efficient method that translates the hard architecture-search problem into a feasible optimization problem.
- Score: 8.976788958300766
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: The history of deep learning has shown that human-designed problem-specific
networks can greatly improve the classification performance of general neural
models. In most practical cases, however, choosing the optimal architecture for
a given task remains a challenging problem. Recent architecture-search methods
are able to automatically build neural models with strong performance but fail
to fully appreciate the interaction between neural architecture and weights.
This work investigates the problem of disentangling the role of the neural
structure and its edge weights, by showing that well-trained architectures may
not need any link-specific fine-tuning of the weights. We compare the
performance of such weight-free networks (in our case these are binary networks
with {0, 1}-valued weights) with random, weight-agnostic, pruned and standard
fully connected networks. To find the optimal weight-agnostic network, we use a
novel and computationally efficient method that translates the hard
architecture-search problem into a feasible optimization problem.More
specifically, we look at the optimal task-specific architectures as the optimal
configuration of binary networks with {0, 1}-valued weights, which can be found
through an approximate gradient descent strategy. Theoretical convergence
guarantees of the proposed algorithm are obtained by bounding the error in the
gradient approximation and its practical performance is evaluated on two
real-world data sets. For measuring the structural similarities between
different architectures, we use a novel spectral approach that allows us to
underline the intrinsic differences between real-valued networks and
weight-free architectures.
Related papers
- Growing Tiny Networks: Spotting Expressivity Bottlenecks and Fixing Them Optimally [2.645067871482715]
In machine learning tasks, one searches for an optimal function within a certain functional space.
This way forces the evolution of the function during training to lie within the realm of what is expressible with the chosen architecture.
We show that the information about desirable architectural changes, due to expressivity bottlenecks can be extracted from %the backpropagation.
arXiv Detail & Related papers (2024-05-30T08:23:56Z) - FlowNAS: Neural Architecture Search for Optical Flow Estimation [65.44079917247369]
We propose a neural architecture search method named FlowNAS to automatically find the better encoder architecture for flow estimation task.
Experimental results show that the discovered architecture with the weights inherited from the super-network achieves 4.67% F1-all error on KITTI.
arXiv Detail & Related papers (2022-07-04T09:05:25Z) - Learning Interpretable Models Through Multi-Objective Neural
Architecture Search [0.9990687944474739]
We propose a framework to optimize for both task performance and "introspectability," a surrogate metric for aspects of interpretability.
We demonstrate that jointly optimizing for task error and introspectability leads to more disentangled and debuggable architectures that perform within error.
arXiv Detail & Related papers (2021-12-16T05:50:55Z) - iDARTS: Differentiable Architecture Search with Stochastic Implicit
Gradients [75.41173109807735]
Differentiable ARchiTecture Search (DARTS) has recently become the mainstream of neural architecture search (NAS)
We tackle the hypergradient computation in DARTS based on the implicit function theorem.
We show that the architecture optimisation with the proposed method, named iDARTS, is expected to converge to a stationary point.
arXiv Detail & Related papers (2021-06-21T00:44:11Z) - Reframing Neural Networks: Deep Structure in Overcomplete
Representations [41.84502123663809]
We introduce deep frame approximation, a unifying framework for representation learning with structured overcomplete frames.
We quantify structural differences with the deep frame potential, a data-independent measure of coherence linked to representation uniqueness and stability.
This connection to the established theory of overcomplete representations suggests promising new directions for principled deep network architecture design.
arXiv Detail & Related papers (2021-03-10T01:15:14Z) - Differentiable Neural Architecture Learning for Efficient Neural Network
Design [31.23038136038325]
We introduce a novel emph architecture parameterisation based on scaled sigmoid function.
We then propose a general emphiable Neural Architecture Learning (DNAL) method to optimize the neural architecture without the need to evaluate candidate neural networks.
arXiv Detail & Related papers (2021-03-03T02:03:08Z) - Firefly Neural Architecture Descent: a General Approach for Growing
Neural Networks [50.684661759340145]
Firefly neural architecture descent is a general framework for progressively and dynamically growing neural networks.
We show that firefly descent can flexibly grow networks both wider and deeper, and can be applied to learn accurate but resource-efficient neural architectures.
In particular, it learns networks that are smaller in size but have higher average accuracy than those learned by the state-of-the-art methods.
arXiv Detail & Related papers (2021-02-17T04:47:18Z) - Adversarially Robust Neural Architectures [43.74185132684662]
This paper aims to improve the adversarial robustness of the network from the architecture perspective with NAS framework.
We explore the relationship among adversarial robustness, Lipschitz constant, and architecture parameters.
Our algorithm empirically achieves the best performance among all the models under various attacks on different datasets.
arXiv Detail & Related papers (2020-09-02T08:52:15Z) - DC-NAS: Divide-and-Conquer Neural Architecture Search [108.57785531758076]
We present a divide-and-conquer (DC) approach to effectively and efficiently search deep neural architectures.
We achieve a $75.1%$ top-1 accuracy on the ImageNet dataset, which is higher than that of state-of-the-art methods using the same search space.
arXiv Detail & Related papers (2020-05-29T09:02:16Z) - A Semi-Supervised Assessor of Neural Architectures [157.76189339451565]
We employ an auto-encoder to discover meaningful representations of neural architectures.
A graph convolutional neural network is introduced to predict the performance of architectures.
arXiv Detail & Related papers (2020-05-14T09:02:33Z) - Fitting the Search Space of Weight-sharing NAS with Graph Convolutional
Networks [100.14670789581811]
We train a graph convolutional network to fit the performance of sampled sub-networks.
With this strategy, we achieve a higher rank correlation coefficient in the selected set of candidates.
arXiv Detail & Related papers (2020-04-17T19:12:39Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.