Evaluation of the Robustness of Visual SLAM Methods in Different
Environments
- URL: http://arxiv.org/abs/2009.05427v1
- Date: Fri, 11 Sep 2020 13:21:34 GMT
- Title: Evaluation of the Robustness of Visual SLAM Methods in Different
Environments
- Authors: Joonas Lomps, Artjom Lind, Amnir Hadachi
- Abstract summary: This paper presents a comprehensive comparison of the latest open-source SLAM algorithms with the main focus being their performance in different environmental surroundings.
The chosen algorithms are evaluated on common publicly available datasets and the results reasoned with respect to the datasets' environment.
This is the first stage of our main target of testing the methods in off-road scenarios.
- Score: 0.0
- License: http://creativecommons.org/licenses/by-nc-sa/4.0/
- Abstract: Determining the position and orientation of a sensor vis-a-vis its
surrounding, while simultaneously mapping the environment around that sensor or
simultaneous localization and mapping is quickly becoming an important
advancement in embedded vision with a large number of different possible
applications. This paper presents a comprehensive comparison of the latest
open-source SLAM algorithms with the main focus being their performance in
different environmental surroundings. The chosen algorithms are evaluated on
common publicly available datasets and the results reasoned with respect to the
datasets' environment. This is the first stage of our main target of testing
the methods in off-road scenarios.
Related papers
- Learning Where to Look: Self-supervised Viewpoint Selection for Active Localization using Geometrical Information [68.10033984296247]
This paper explores the domain of active localization, emphasizing the importance of viewpoint selection to enhance localization accuracy.
Our contributions involve using a data-driven approach with a simple architecture designed for real-time operation, a self-supervised data training method, and the capability to consistently integrate our map into a planning framework tailored for real-world robotics applications.
arXiv Detail & Related papers (2024-07-22T12:32:09Z) - FIT-SLAM -- Fisher Information and Traversability estimation-based
Active SLAM for exploration in 3D environments [1.4474137122906163]
Active visual SLAM finds a wide array of applications in-Denied sub-terrain environments and outdoor environments for ground robots.
It is imperative to incorporate the perception considerations in the goal selection and path planning towards the goal during an exploration mission.
We propose FIT-SLAM, a new exploration method tailored for unmanned ground vehicles (UGVs) to explore 3D environments.
arXiv Detail & Related papers (2024-01-17T16:46:38Z) - LuViRA Dataset Validation and Discussion: Comparing Vision, Radio, and Audio Sensors for Indoor Localization [8.296768815428441]
We present a unique comparative analysis, and evaluation of vision, radio, and audio based localization algorithms.
We create the first baseline for the aforementioned sensors using the recently published Lund University Vision, Radio, and Audio (LuViRA) dataset.
Some of the challenges of using each specific sensor for indoor localization tasks are highlighted.
arXiv Detail & Related papers (2023-09-06T12:57:00Z) - View Consistent Purification for Accurate Cross-View Localization [59.48131378244399]
This paper proposes a fine-grained self-localization method for outdoor robotics.
The proposed method addresses limitations in existing cross-view localization methods.
It is the first sparse visual-only method that enhances perception in dynamic environments.
arXiv Detail & Related papers (2023-08-16T02:51:52Z) - Evaluation of Environmental Conditions on Object Detection using Oriented Bounding Boxes for AR Applications [7.022872089444935]
Scene analysis and object recognition play a crucial role in augmented reality (AR)
New approach is proposed that involves using oriented bounding boxes with a detection and recognition deep network to improve performance and processing time.
Results indicate that the proposed approach tends to produce better Average Precision and greater accuracy for small objects in most of the tested conditions.
arXiv Detail & Related papers (2023-06-29T09:17:58Z) - Efficient Sensor Placement from Regression with Sparse Gaussian Processes in Continuous and Discrete Spaces [3.729242965449096]
The sensor placement problem is a common problem that arises when monitoring correlated phenomena.
We present a novel formulation to the SP problem based on variational approximation that can be optimized using gradient descent.
arXiv Detail & Related papers (2023-02-28T19:10:12Z) - Few-Shot Audio-Visual Learning of Environment Acoustics [89.16560042178523]
Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener.
We explore how to infer RIRs based on a sparse set of images and echoes observed in the space.
In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs.
arXiv Detail & Related papers (2022-06-08T16:38:24Z) - Learning-based Localizability Estimation for Robust LiDAR Localization [13.298113481670038]
LiDAR-based localization and mapping is one of the core components in many modern robotic systems.
This work proposes a neural network-based estimation approach for detecting (non-)localizability during robot operation.
arXiv Detail & Related papers (2022-03-11T01:12:00Z) - Seeking Similarities over Differences: Similarity-based Domain Alignment
for Adaptive Object Detection [86.98573522894961]
We propose a framework that generalizes the components commonly used by Unsupervised Domain Adaptation (UDA) algorithms for detection.
Specifically, we propose a novel UDA algorithm, ViSGA, that leverages the best design choices and introduces a simple but effective method to aggregate features at instance-level.
We show that both similarity-based grouping and adversarial training allows our model to focus on coarsely aligning feature groups, without being forced to match all instances across loosely aligned domains.
arXiv Detail & Related papers (2021-10-04T13:09:56Z) - POMP: Pomcp-based Online Motion Planning for active visual search in
indoor environments [89.43830036483901]
We focus on the problem of learning an optimal policy for Active Visual Search (AVS) of objects in known indoor environments with an online setup.
Our POMP method uses as input the current pose of an agent and a RGB-D frame.
We validate our method on the publicly available AVD benchmark, achieving an average success rate of 0.76 with an average path length of 17.1.
arXiv Detail & Related papers (2020-09-17T08:23:50Z) - Cross-Domain Facial Expression Recognition: A Unified Evaluation
Benchmark and Adversarial Graph Learning [85.6386289476598]
We develop a novel adversarial graph representation adaptation (AGRA) framework for cross-domain holistic-local feature co-adaptation.
We conduct extensive and fair evaluations on several popular benchmarks and show that the proposed AGRA framework outperforms previous state-of-the-art methods.
arXiv Detail & Related papers (2020-08-03T15:00:31Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.