Representation matching for delegated quantum computing
- URL: http://arxiv.org/abs/2009.06667v2
- Date: Fri, 28 May 2021 11:56:13 GMT
- Title: Representation matching for delegated quantum computing
- Authors: Yuxiang Yang and Masahito Hayashi
- Abstract summary: representation matching is a generic probabilistic protocol for reducing the cost of quantum computation in a quantum network.
We show that the representation matching protocol is capable of reducing the communication or memory cost to almost minimum in various tasks.
- Score: 64.67104066707309
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Many quantum computational tasks have inherent symmetries, suggesting a path
to enhancing their efficiency and performance. Exploiting this observation, we
propose representation matching, a generic probabilistic protocol for reducing
the cost of quantum computation in a quantum network. We show that the
representation matching protocol is capable of reducing the communication or
memory cost to almost minimum in various tasks, including remote execution of
unitary gate arrays, permutation gates and unitary conjugation, as well as the
storage and retrieval of unitary gates.
Related papers
- Learning the expressibility of quantum circuit ansatz using transformer [5.368973814856243]
We propose using a transformer model to predict the expressibility of quantum circuit ansatze.
This research can enhance the understanding of the expressibility of quantum circuit ansatze and advance quantum architecture search algorithms.
arXiv Detail & Related papers (2024-05-29T07:34:07Z) - Near-Term Distributed Quantum Computation using Mean-Field Corrections
and Auxiliary Qubits [77.04894470683776]
We propose near-term distributed quantum computing that involve limited information transfer and conservative entanglement production.
We build upon these concepts to produce an approximate circuit-cutting technique for the fragmented pre-training of variational quantum algorithms.
arXiv Detail & Related papers (2023-09-11T18:00:00Z) - Multi-User Entanglement Distribution in Quantum Networks Using Multipath
Routing [55.2480439325792]
We propose three protocols that increase the entanglement rate of multi-user applications by leveraging multipath routing.
The protocols are evaluated on quantum networks with NISQ constraints, including limited quantum memories and probabilistic entanglement generation.
arXiv Detail & Related papers (2023-03-06T18:06:00Z) - Oblivious Quantum Computation and Delegated Multiparty Quantum
Computation [61.12008553173672]
We propose a new concept, oblivious computation quantum computation, where secrecy of the input qubits and the program to identify the quantum gates are required.
Exploiting quantum teleportation, we propose a two-server protocol for this task.
Also, we discuss delegated multiparty quantum computation, in which, several users ask multiparty quantum computation to server(s) only using classical communications.
arXiv Detail & Related papers (2022-11-02T09:01:33Z) - Effective non-local parity-dependent couplings in qubit chains [0.0]
We harness the simultaneous coupling of qubits on a chain and engineer a set of non-local parity-dependent quantum operations.
The resulting effective long-range couplings directly implement a parametrizable Trotter-step for Jordan-Wigner fermions.
We present numerical simulations of the gate operation in a superconducting quantum circuit architecture.
arXiv Detail & Related papers (2022-03-14T17:33:40Z) - Circuit Symmetry Verification Mitigates Quantum-Domain Impairments [69.33243249411113]
We propose circuit-oriented symmetry verification that are capable of verifying the commutativity of quantum circuits without the knowledge of the quantum state.
In particular, we propose the Fourier-temporal stabilizer (STS) technique, which generalizes the conventional quantum-domain formalism to circuit-oriented stabilizers.
arXiv Detail & Related papers (2021-12-27T21:15:35Z) - Quantum communication complexity beyond Bell nonlocality [87.70068711362255]
Efficient distributed computing offers a scalable strategy for solving resource-demanding tasks.
Quantum resources are well-suited to this task, offering clear strategies that can outperform classical counterparts.
We prove that a new class of communication complexity tasks can be associated to Bell-like inequalities.
arXiv Detail & Related papers (2021-06-11T18:00:09Z) - High-fidelity quantum gates for OAM qudits on quantum memory [0.0]
We propose a method for implementing single-qudit gates for qudits based on light modes with orbital angular momentum.
We show that the considered gates provide an extremely high level of fidelity of single-qudit transformations.
arXiv Detail & Related papers (2021-05-25T19:13:27Z) - Parallel entangling gate operations and two-way quantum communication in
spin chains [0.0]
We propose a protocol to parallelize the implementation of two-qubit entangling gates.
The proposed protocol can serve for realizing two-way quantum communication.
arXiv Detail & Related papers (2020-08-28T17:50:38Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.