Deep Actor-Critic Learning for Distributed Power Control in Wireless
Mobile Networks
- URL: http://arxiv.org/abs/2009.06681v1
- Date: Mon, 14 Sep 2020 18:29:12 GMT
- Title: Deep Actor-Critic Learning for Distributed Power Control in Wireless
Mobile Networks
- Authors: Yasar Sinan Nasir and Dongning Guo
- Abstract summary: Deep reinforcement learning offers a model-free alternative to supervised deep learning and classical optimization.
We present a distributively executed continuous power control algorithm with the help of deep actor-critic learning.
We integrate the proposed power control algorithm to a time-slotted system where devices are mobile and channel conditions change rapidly.
- Score: 5.930707872313038
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Deep reinforcement learning offers a model-free alternative to supervised
deep learning and classical optimization for solving the transmit power control
problem in wireless networks. The multi-agent deep reinforcement learning
approach considers each transmitter as an individual learning agent that
determines its transmit power level by observing the local wireless
environment. Following a certain policy, these agents learn to collaboratively
maximize a global objective, e.g., a sum-rate utility function. This
multi-agent scheme is easily scalable and practically applicable to large-scale
cellular networks. In this work, we present a distributively executed
continuous power control algorithm with the help of deep actor-critic learning,
and more specifically, by adapting deep deterministic policy gradient.
Furthermore, we integrate the proposed power control algorithm to a
time-slotted system where devices are mobile and channel conditions change
rapidly. We demonstrate the functionality of the proposed algorithm using
simulation results.
Related papers
- Unsupervised Deep Unfolded PGD for Transmit Power Allocation in Wireless
Systems [0.6091702876917281]
We propose a simple low-complexity TPC algorithm based on the deep unfolding of the iterative projected gradient (PGD) algorithm into layers of a deep neural network and learning the step-size parameters.
Performance evaluation in dense device-to-device (D2D) communication scenarios showed that the proposed method can achieve better performance than the iterative algorithm with more than a factor of 2 lower number of iterations.
arXiv Detail & Related papers (2023-06-20T19:51:21Z) - Multi-agent Reinforcement Learning with Graph Q-Networks for Antenna
Tuning [60.94661435297309]
The scale of mobile networks makes it challenging to optimize antenna parameters using manual intervention or hand-engineered strategies.
We propose a new multi-agent reinforcement learning algorithm to optimize mobile network configurations globally.
We empirically demonstrate the performance of the algorithm on an antenna tilt tuning problem and a joint tilt and power control problem in a simulated environment.
arXiv Detail & Related papers (2023-01-20T17:06:34Z) - Distributed-Training-and-Execution Multi-Agent Reinforcement Learning
for Power Control in HetNet [48.96004919910818]
We propose a multi-agent deep reinforcement learning (MADRL) based power control scheme for the HetNet.
To promote cooperation among agents, we develop a penalty-based Q learning (PQL) algorithm for MADRL systems.
In this way, an agent's policy can be learned by other agents more easily, resulting in a more efficient collaboration process.
arXiv Detail & Related papers (2022-12-15T17:01:56Z) - Hierarchical Multi-Agent DRL-Based Framework for Joint Multi-RAT
Assignment and Dynamic Resource Allocation in Next-Generation HetNets [21.637440368520487]
This paper considers the problem of cost-aware downlink sum-rate via joint optimal radio access technologies (RATs) assignment and power allocation in next-generation wireless networks (HetNets)
We propose a hierarchical multi-agent deep reinforcement learning (DRL) framework, called DeepRAT, to solve it efficiently and learn system dynamics.
In particular, the DeepRAT framework decomposes the problem into two main stages; the RATs-EDs assignment stage, which implements a single-agent Deep Q Network algorithm, and the power allocation stage, which utilizes a multi-agent Deep Deterministic Policy Gradient
arXiv Detail & Related papers (2022-02-28T09:49:44Z) - Learning Optimal Antenna Tilt Control Policies: A Contextual Linear
Bandit Approach [65.27783264330711]
Controlling antenna tilts in cellular networks is imperative to reach an efficient trade-off between network coverage and capacity.
We devise algorithms learning optimal tilt control policies from existing data.
We show that they can produce optimal tilt update policy using much fewer data samples than naive or existing rule-based learning algorithms.
arXiv Detail & Related papers (2022-01-06T18:24:30Z) - Semantic-Aware Collaborative Deep Reinforcement Learning Over Wireless
Cellular Networks [82.02891936174221]
Collaborative deep reinforcement learning (CDRL) algorithms in which multiple agents can coordinate over a wireless network is a promising approach.
In this paper, a novel semantic-aware CDRL method is proposed to enable a group of untrained agents with semantically-linked DRL tasks to collaborate efficiently across a resource-constrained wireless cellular network.
arXiv Detail & Related papers (2021-11-23T18:24:47Z) - Deep Reinforcement Learning Based Multidimensional Resource Management
for Energy Harvesting Cognitive NOMA Communications [64.1076645382049]
Combination of energy harvesting (EH), cognitive radio (CR), and non-orthogonal multiple access (NOMA) is a promising solution to improve energy efficiency.
In this paper, we study the spectrum, energy, and time resource management for deterministic-CR-NOMA IoT systems.
arXiv Detail & Related papers (2021-09-17T08:55:48Z) - Scheduling and Power Control for Wireless Multicast Systems via Deep
Reinforcement Learning [33.737301955006345]
Multicasting in wireless systems is a way to exploit the redundancy in user requests in a Content Centric Network.
Power control and optimal scheduling can significantly improve the wireless multicast network's performance under fading.
We show that power control policy can be learnt for reasonably large systems via this approach.
arXiv Detail & Related papers (2020-09-27T15:59:44Z) - Learning Centric Power Allocation for Edge Intelligence [84.16832516799289]
Edge intelligence has been proposed, which collects distributed data and performs machine learning at the edge.
This paper proposes a learning centric power allocation (LCPA) method, which allocates radio resources based on an empirical classification error model.
Experimental results show that the proposed LCPA algorithm significantly outperforms other power allocation algorithms.
arXiv Detail & Related papers (2020-07-21T07:02:07Z) - Consensus Multi-Agent Reinforcement Learning for Volt-VAR Control in
Power Distribution Networks [8.472603460083375]
We propose consensus multi-agent deep reinforcement learning algorithm to solve the VVC problem.
The proposed algorithm allows individual agents to learn a group control policy using local rewards.
Numerical studies on IEEE distribution test feeders show that our proposed algorithm matches the performance of single-agent reinforcement learning benchmark.
arXiv Detail & Related papers (2020-07-06T18:21:47Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.