Machine Learning Applications in Misuse and Anomaly Detection
- URL: http://arxiv.org/abs/2009.06709v1
- Date: Thu, 10 Sep 2020 19:52:00 GMT
- Title: Machine Learning Applications in Misuse and Anomaly Detection
- Authors: Jaydip Sen and Sidra Mehtab
- Abstract summary: Machine learning and data mining algorithms play important roles in designing intrusion detection systems.
Based on their approaches toward the detection of attacks in a network, intrusion detection systems can be broadly categorized into two types.
In the misuse detection systems, an attack in a system is detected whenever the sequence of activities in the network matches with a known attack signature.
In the anomaly detection approach, on the other hand, anomalous states in a system are identified based on a significant difference in the state transitions of the system from its normal states.
- Score: 0.0
- License: http://arxiv.org/licenses/nonexclusive-distrib/1.0/
- Abstract: Machine learning and data mining algorithms play important roles in designing
intrusion detection systems. Based on their approaches toward the detection of
attacks in a network, intrusion detection systems can be broadly categorized
into two types. In the misuse detection systems, an attack in a system is
detected whenever the sequence of activities in the network matches with a
known attack signature. In the anomaly detection approach, on the other hand,
anomalous states in a system are identified based on a significant difference
in the state transitions of the system from its normal states. This chapter
presents a comprehensive discussion on some of the existing schemes of
intrusion detection based on misuse detection, anomaly detection and hybrid
detection approaches. Some future directions of research in the design of
algorithms for intrusion detection are also identified.
Related papers
- Time-Aware Face Anti-Spoofing with Rotation Invariant Local Binary Patterns and Deep Learning [50.79277723970418]
imitation attacks can lead to erroneous identification and subsequent authentication of attackers.
Similar to face recognition, imitation attacks can also be detected with Machine Learning.
We propose a novel approach that promises high classification accuracy by combining previously unused features with time-aware deep learning strategies.
arXiv Detail & Related papers (2024-08-27T07:26:10Z) - Interactive System-wise Anomaly Detection [66.3766756452743]
Anomaly detection plays a fundamental role in various applications.
It is challenging for existing methods to handle the scenarios where the instances are systems whose characteristics are not readily observed as data.
We develop an end-to-end approach which includes an encoder-decoder module that learns system embeddings.
arXiv Detail & Related papers (2023-04-21T02:20:24Z) - TAD: Transfer Learning-based Multi-Adversarial Detection of Evasion
Attacks against Network Intrusion Detection Systems [0.7829352305480285]
We implement existing state-of-the-art models for intrusion detection.
We then attack those models with a set of chosen evasion attacks.
In an attempt to detect those adversarial attacks, we design and implement multiple transfer learning-based adversarial detectors.
arXiv Detail & Related papers (2022-10-27T18:02:58Z) - Detect & Reject for Transferability of Black-box Adversarial Attacks
Against Network Intrusion Detection Systems [0.0]
We investigate the transferability of adversarial network traffic against machine learning-based intrusion detection systems.
We examine Detect & Reject as a defensive mechanism to limit the effect of the transferability property of adversarial network traffic against machine learning-based intrusion detection systems.
arXiv Detail & Related papers (2021-12-22T17:54:54Z) - Orthogonal variance-based feature selection for intrusion detection
systems [0.0]
We apply a fusion machine learning method to construct an automatic intrusion detection system.
The selected features are used to build a deep neural network for intrusion detection.
The proposed algorithm achieves 100% detection accuracy in identifying DDoS attacks.
arXiv Detail & Related papers (2021-10-25T04:07:53Z) - Adversarial Attacks and Mitigation for Anomaly Detectors of
Cyber-Physical Systems [6.417955560857806]
In this work, we present an adversarial attack that simultaneously evades the anomaly detectors and rule checkers of a CPS.
Inspired by existing gradient-based approaches, our adversarial attack crafts noise over the sensor and actuator values, then uses a genetic algorithm to optimise the latter.
We implement our approach for two real-world critical infrastructure testbeds, successfully reducing the classification accuracy of their detectors by over 50% on average.
arXiv Detail & Related papers (2021-05-22T12:19:03Z) - Few-shot Network Anomaly Detection via Cross-network Meta-learning [45.8111239825361]
We propose a new family of graph neural networks -- Graph Deviation Networks (GDN)
GDN can leverage a small number of labeled anomalies for enforcing statistically significant deviations between abnormal and normal nodes on a network.
We equip the proposed GDN with a new cross-network meta-learning algorithm to realize few-shot network anomaly detection.
arXiv Detail & Related papers (2021-02-22T16:42:37Z) - No Need to Know Physics: Resilience of Process-based Model-free Anomaly
Detection for Industrial Control Systems [95.54151664013011]
We present a novel framework to generate adversarial spoofing signals that violate physical properties of the system.
We analyze four anomaly detectors published at top security conferences.
arXiv Detail & Related papers (2020-12-07T11:02:44Z) - A Novel Anomaly Detection Algorithm for Hybrid Production Systems based
on Deep Learning and Timed Automata [73.38551379469533]
DAD:DeepAnomalyDetection is a new approach for automatic model learning and anomaly detection in hybrid production systems.
It combines deep learning and timed automata for creating behavioral model from observations.
The algorithm has been applied to few data sets including two from real systems and has shown promising results.
arXiv Detail & Related papers (2020-10-29T08:27:43Z) - Survey of Network Intrusion Detection Methods from the Perspective of
the Knowledge Discovery in Databases Process [63.75363908696257]
We review the methods that have been applied to network data with the purpose of developing an intrusion detector.
We discuss the techniques used for the capture, preparation and transformation of the data, as well as, the data mining and evaluation methods.
As a result of this literature review, we investigate some open issues which will need to be considered for further research in the area of network security.
arXiv Detail & Related papers (2020-01-27T11:21:05Z)
This list is automatically generated from the titles and abstracts of the papers in this site.
This site does not guarantee the quality of this site (including all information) and is not responsible for any consequences.